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Critical Properties of a Randomly Driven Diffusive System
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We consider a system of interacting particles, diffusing under the influence of both thermal noise and
a random, external electric field which acts in a subspace of m dimensions. In the nonequilibrium steady
state, the net current is zero. When the interparticle interaction is short ranged and attractive, a
second-order phase transition is expected. Analyzing this system in field-theoretic terms, we find the
upper critical dimension to be 4 —rn and its behavior to fall outside the universality classes of the equi-
librium Ising model and the usual driven diffusive system. A new fixed point and critical exponents are
computed.
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Recently, considerable eff'ort' ' has been devoted to
the study of phase transitions in a driven lattice-gas sys-
tem, which was originally introduced as a model for su-

perionic conductors. ' In this system, particles hop from
site to nearest-neighbor site under the influence of a
short-ranged interaction between the particles, a simulat-
ed thermal bath, and an external "driving" field E. Most
attention was directed to models in which the interaction
is attractive ("ferromagnetic, " if the lattice gas is

phrased in the language of Ising spins), while some au-
thors' ' considered repulsive ("antiferromagnetic") in-

teractions. In all cases, the E field is a constant, in both
space and time, so that, with periodic boundary condi-
tions, the system eventually settles into a steady state
with a positive average current.

In the absence of E, these systems are well known to
undergo a second-order transition. Near this critical
point, nonclassical singularities, belonging to the Ising
universality class, are present in the thermodynamics if
d, the spatial dimension, is below 4. When driven, such
a critical point survives for a range of E. However, the
critical properties are very different, depending on
whether the interaction is attractive or repulsive. All re-
sults pertaining to criticality are obtained by one of the
three following methods: (a) Monte Carlo simula-
tions' in d ~ 3, (b) mean-field approaches, and (c)
field-theoretic renormalization-group calculations. '

Though not all approaches agree on the details, there is

little doubt that driven diffusive systems with attractive
interactions belong to a new universality class, while
those with repulsive interactions are Ising-like.

In this Letter, we extend these investigations by study-
ing the eff'ects of a random driving field on critical prop-
erties of this system. More precisely, we have in mind
annealed randomness, i.e. , an E,(x, t) with the following
properties: (a) It acts in an m-dimensional subspace of a
d-dimensional system; (b) (E,(x, t ) ) =0, a = 1, . . . , m;
and (c) (E (x, t)Ep(x', t')) =46(x —x')8(t —t')8

p

Clearly, m=0 is the usual equilibrium case while m=1
corresponds to the standard driven diffusive system with
a randomly fluctuating field amplitude. Borrowing the
language of the constant-E case, we will use the adjec-
tives "parallel" and "transverse" when referring to the
m- and (d —m)-dimensional subspaces, respectively.

Since we are interested in the universal, critical prop-
erties, we will focus only on the low-frequency and long-
wavelength limits of the system. To study such infrared
behavior, it is customary to consider a coarse-grained,
continuum version, regardless of the microscopic dis-
creteness. In principle, one can perform such a coarse-
graining operation, starting from the microscopic transi-
tion probabilities and the master equation, arriving at
the Langevin equation. In practice, this route has rarely
been taken. Instead, one tries to identify the slow vari-
ables relevant to the critical point and postulate a
Langevin equation, guided by considerations such as
symmetries and conservation laws.

Following this route, we propose a set of Langevin
equations. We will argue that these equations display all
the features necessary for an adequate description of the
system. Then, we exploit standard techniques" of field-
theoretic renormalization-group analysis for studying dy-
namics. For the attractive case, the upper critical di-
mension, above which critical behavior is mean-field-like,
is d, =4 —m. This result is in stark contrast to d, =5,
which holds for a system driven by a constant E. The
fixed point governing this nonequilibrium transition is
quite distinct from both the Wilson-Fisher' (for equilib-
rium systems) and the standard driven diA'usive fixed
points. For the repulsive case, we find little difference
between systems driven by random or constant fields, so
that the (leading) singularities are again Ising-like.

In the remainder of this Letter, we describe the system
and our methods briefly. More details will be published
elsewhere. We will present the main results, i.e., some of
the exponents associated with the new fixed point. We
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conclude with some remarks on possible observations and
related issues.

Consider a lattice gas on, say, a square lattice. To
denote the configurations, we use the set of occupation
numbers ln;j, where n; =1 or 0 depending on whether
the site i is occupied or not. The short-ranged interac-
tion is modeled by the Hamiltonian H= Jg—n;n~, the
sum being over nearest-neighbor pairs. For the attrac-
tive case, J & 0; otherwise, it is negative. Since we wish
to conserve particle number, Pn;, and to study criticali-
ty, we consider only half-filled systems. For equilibrium
properties, we let the system evolve stochastically under
Kawasaki' dynamics, i.e., the particles may only jump
into a neighboring hole. Coupling to a thermal bath, at
temperature T, can be simulated by having the jump
rates depend on the change in the internal energy, hH,
through the ratio d,H/T (Boltzmann's constant is set to
unity).

To investigate nonequilibrium steady states due to a
constant E, we may simply modify the jump rates by
adding a term eE to hH, where t..= 1, —1, and 0 for
jumps against, along, or transverse to E, respectively.
With periodic boundary conditions, the system settles
into a steady state eventually. These periodic boundary
conditions are crucial in producing a true non-
Hamiltonian system, since the driving force can no
longer be written as gradient of a well-defined potential.

In a field-theoretic analysis of such systems, we start
with a continuum version of the dynamics, in terms of a
Langevin equation for an order parameter p(x, t) with
an appropriate noise term. For the J & 0 case, p denotes
the coarse-grained local density fluctuations n(x, t) —

—,',
while for J & 0, p is the difference between particle den-
sities on the two checkerboard sublattices. As we men-
tioned, although such a coarse-graining operation is pos-
sible in principle, we follow the customary practice by
postulating Langevin equations directly. Since most of
the novel properties appear in the attractive case, we now
focus on that and defer discussions on the J & 0 system
until the end.

One way to arrive at the desired equations is to start
with the ones for a constant driving field. Replacing the
constant by E(x, t) and assuming a Gaussian distribu-
tion with the properties stated above, we can integrate
out E to give new eAective parameters. Another way is
to argue that the extra randomness associated with ex-
changes in the parallel directions has three important
effects: (a) The diffusion constant, or the effective tem-
perature, is higher for this subspace and (b) the noise
correlation matrix is not proportional to the diff'usion

matrix, due to violation of the fluctuation-dissipation
theorem. While both of these eAects are present already
in the constant-E model, the key distinction here is that
(c) the term gV p replaces BE& as the most relevant
nonlinearity. The latter must be absent, since our model
is symmetric under x —x. Taking either route leads

us to the following Langevin equation:

8,$(x, t) =p9 p+zV p
—V p

+gV~$3/3! —(8 /+V g),

where 8 (V) stands for gradients in the parallel (trans-
verse) subspace. For economy, we left out all terms
which are irrelevant in the renormalization-group sense
and scaled the coefficient of —V P to unity. As in the
constant-E system, strong anisotropy leads us to expect
the critical point at r =0 with p & 0, the effective tem-
perature being higher in the parallel subspace. Our
noise is distributed according to exp j —fdx dt [( /4o'
+g /4oll. However, o'/pro/z, since we have a non-
equilibrium system. Finally, note that all parameters are
functions (assumed analytic) of the microscopic T, J,
and h, . But the detailed dependence is not crucial to
universal properties. We only need z(T„J,A) =0, which
defines T, (J,A), while z = 0 is the critical region.

Next, we follow a standard procedure, casting (1) in
the dynamic functional formalism ' ' and studying the
critical theory (renormalized zR =0). Denoting the
external momentum scale by p, we see that, naively,
parallel and transverse momenta scale as p and p, re-
spectively. As a result, o' is naively irrelevant, compared
to a. Further, the dimension of g is 4 —m —d, giving us
the upper critical dimension d, =4 —m. In contrast, the
same analysis leads to (5 —d)/2 for the naive dimension
of E in the constant-drive model. Thus, we set up an
expansion in powers of a=4 —m —d and find a nontrivial
fixed point g*=0(e). In the sense that m=0 is the
equilibrium system, this expansion is similar to the
Wilson-Fisher case.

Before we present the results, we should note that only
the m=1 case is "interesting, " in the following sense.
Since the (infrared) divergences are associated with the
transverse (d —m)-dimensional subspace, we keep m a
positive integer. If m=2, we see that d, =2, meaning
that such models are well described by classical theories
for d & 2. On the other hand, for d ~ 2, d —m itself is
no longer positive. Thus, we restrict ourselves to study-
ing m =1 below.

To obtain nonclassical exponents of our theory, we in-
vestigate divergences in d=3 —t. As in model B, ' the
integrals associated with X and o. are convergent. Apart
from these, p clearly needs no renormalization, since the
nonlinear term has no 8's. On the other hand, renormal-
ization of p is nontrivial, giving an anomalous dimension
rt/2. Similarly z also requires renormalization, leading
to v, which may be translated into the exponent for an
appropriately defined correlation length. Note that our
correlation function will also have r decays for all
T & T, . Thus some care in data fitting must be exer-
cised before v can be extracted. Besides these dominant
singularities, the renormalization of g automatically
gives m, a correction-to-scaling exponent associated with
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g —g*. To lowest nonvanishing order in t. , we find

t) =4m /243, v= —,
' (1+@/6), co =E. (2)

Other exponents can be obtained in a similar manner.
Finally, we study the critical behavior of a system with

repulsive interparticle interactions. Our analysis leads to
the same conclusion as for a system driven by a uniform
E, i.e., the leading singularities are Ising-like. For
completeness, we mention here the main points. There
are two "slow" variables: the ordering field ("staggered
magnetization") p(x, r) and the "magnetization"
m(x, r), which is the coarse-grained n; ——,

'
. Though

nonordering and being zero on the average, the latter is
essential since E has an effect on the phase transition
only via m. The setup and analysis for the new,
random-field model again follows closely the constant-E
case, the major difference here being the absence of the
t)Em term in the Langevin equations. Then, by using
either the arguments of Grinstein, Jayaprakash, and
He' or straightforward naive dimensional analysis, we
arrive at the same conclusion, i.e., that our system be-
longs to the universality class of the ordinary Ising mod-
el. Of course, major differences exist, but they will ap-
pear only at the corrections-to-scaling level. Before con-
cluding, we note that, like in the uniform-E case, we also
expect first-order transitions for strong fields, when E
simply overwhelms the ordering mechanism, even at
T=0.

We conclude with some remarks on observability and
related open questions. The easiest way to observe the
new critical behavior of J & 0 systems is through Monte
Carlo simulations, as in the uniform-E case. ' We are
encouraged by preliminary data for d=2 systems' indi-
cating p —0.2, which is consistent with our prediction of
0.29 (by naively setting e=l). Clearly more work is
needed, on both fronts. In addition to simulations, we
propose the following experiment for testing these pre-
dictions. Adsorb a thin film of a fast ionic conductor on
a cylindrical substrate. Applying a random (in time)
magnetic field through the cylinder will induce a random
electric field on the sample. Further, we argue that, with
(annealed) impurities distributed randomly in space,
such a system is well modeled by our equations. Note

To obtain other exponents, we cannot simply use the
static scaling laws. Instead, scaling analysis of the
equation of state gives p = —,

' v(d —1+3t)/2) exactly.
We caution that, unlike ordinary critical systems, the ex-
ponent q does not enter naively into the correlation func-
tion. Since the latter is very anisotropic in momentum
and real spaces (MS and RS), we may define four
different q-like exponents:

MS MS RS 1 RS4 2p+4
4 —g' ' 4 —

g

that the uniform-drive case cannot be realized so simply,
since a magnetic field having a linear time dependence is
necessary. An experimentalist may naturally ask if our
model can be extended to include ac fields. However,
such fields produce periodic, if not chaotic, statistical dis-
tributions, which are completely outside the scope of
present analytical techniques.

Although we presented our model in terms of a ran-
domly driven diffusive system, we believe that it is also
appropriate for a lattice gas under two temperatures, '

in which particle hops in the m-dimensional subspace are
coupled to a higher-temperature bath than in the com-
plementary subspace. Clearly, such a system is not ex-
pected to satisfy the fluctuation-dissipation theorem. By
setting the parallel temperature to be higher, we expect i
to vanish before p. Studies are in progress to elucidate
the differences between these models by, for example,
identifying appropriate irrelevant operators.

Another issue deserving further study is the stability
of our fixed point against the constant-E interaction. Al-
though it is easy to see that |)EQ is naively more
relevant than gV p, we must be cautious, bearing in
mind the many surprises associated with driven systems;
e.g. , E itself needs no renormalization. To end, we point
to an interesting generalization of these models, involv-

ing a uniform E set off axis, e.g. , E =E~ &0, E, =0.
Microscopically, a particle may hop along either the x or
the y axis, mimicking a random drive in the x —y direc-
tion. On the other hand, we have essentially a uniform
drive in the x+y direction, while jumps along the z
direction are dictated only by internal energetics. Thus,
we have a combination of both types of drive, giving rise
to a threefold anisotropy. Clearly, new theoretical vistas
abound. It would be most gratifying if corresponding
physical materials and experimental realizations were
found.
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