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A new method is developed for obtaining thermodynamic information over a wide range in parameter
space from a series expansion involving the first few cumulants of a distribution function which is gen-
erated at one point in parameter space. The method is employed to obtain the temperature dependence
of the Gibbs free energy, the enthalpy, and the lattice parameter of a Lennard-Jones crystal from Monte
Carlo simulations. Good agreement with independent calculations is found over a temperature range of

approximately 75% of the melting temperature.

PACS numbers: 65.50.+m, 05.70.Ce, 65.70.+y

The Monte Carlo (MC) method has been used exten-
sively to perform controlled computer simulations in
which the ensemble averages of various thermodynamic
quantities are calculated. In many cases, the object of
these studies is to determine the dependence of averaged
quantities, such as the free energy or the lattice parame-
ter of a solid, on some variable thermodynamic parame-
ter, such as the temperature or pressure. While this is
usually accomplished by performing a series of simula-
tions at different values of the thermodynamic parame-
ter, it is possible, in principle, to determine the depen-
dence of these averaged quantities on a given parameter
by doing simulations at only one point in parameter
space. 1-3

For example, MacDonald and SingerI used a histo-
gram method in order to calculate some thermodynamic
properties of liquid argon. In this method a histogram of
the potential energies corresponding to many distinct
configurations generated in a MC simulation at a fixed
temperature 7'y was constructed. By suitably reweight-
ing the original histogram, histograms corresponding to
different temperatures 7 were obtained and then used to
calculate such quantities as the pressure and the heat
capacity. However, because the high- and low-energy
wings of the original histogram, which are sampled com-
paratively rarely, contribute significantly to the re-
weighted histograms, particularly for |7 — 7| large, the
range of temperatures that could be probed by this
method was limited to about (1 =0.15) 7.

More recently, Alves, Berg, and Villanova* and Fer-
renberg and Swendsen® have used the histogram method
to calculate the density of states for the three-dimen-
sional Ising model and critical temperature and the
specific heat at the critical temperature of the eight-state
Potts model, respectively. While this method is ideally
suited for the accurate determination of thermodynamic
information near phase transitions, the range of parame-
ter space that can be explored is limited by the size of
the system under study.® Further, rather long simula-
tions consisting of up to 8x10% Monte Carlo steps
(MCS) are needed in order to accurately determine the

histogram. Such long simulations are impractical for the
study of the thermodynamics of liquids and solids that
are described by continuous potentials.

In this Letter we present a new, computationally ef-
ficient method for calculating various thermodynamic
functions over a wider range in parameter space within a
single-phase region than is generally possible with the
histogram method. The central advance of the new
method is to systematically analyze the distribution
function obtained at a fixed parameter in terms of its cu-
mulants. Such an analysis provides three benefits. First,
it shows that only the lowest-order cumulants of the dis-
tribution function, which are well determined by simula-
tion, are necessary for the accurate calculation of many
thermodynamic quantities. Second, by effectively
smoothing the histogram obtained in the simulation, it
provides a controlled, analytic approximation to the dis-
tribution function, the wings of which are poorly deter-
mined from simulation.” Third, it largely obviates long
MC simulations and is not restricted to small system
sizes. This new method can be viewed as being comple-
mentary to the histogram method in that it is well suited
to the study of thermodynamic properties over a wide
range of parameters away from phase transitions. We
validate the method by calculating the temperature
dependence of the Gibbs free energy G per particle, the
enthalpy H per particle, and the lattice parameter a of a
perfect fcc crystal from an analysis of the enthalpy dis-
tribution function in terms of its cumulants as obtained
from isobaric MC simulations at one fixed temperature
T.

Consider a solid consisting of N particles of equal
mass which is confined to a cell of volume ¥ at some (in-
verse) temperature f=1/kgT, where kg is Boltzmann’s
constant. The particles interact via a potential
UR|,R3,R3, ..., Ry), where R, is the location of par-
ticle n in configuration space. The isobaric configu-
rational partition function Z(B,p,IV) is given by

Z(ﬂ,p,N)=Cf0°°dVZ(ﬁ,V,N)exp{—ﬂpV}, ¢))
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where over a range in temperature from a simulation which is
performed at a single temperature 7.
= 3N —_ . -

Z(p,V,N)=[vd*"Rexp{—BU(R,R>,Rs, ..., RN}, It is convenient at this point to introduce a joint
C is a normalization constant, and p is the pressure. The moment-generating function

cpnﬁgurational canonical average </'1),;,p,N of some quan- ®0.) =(expl— (B —B)H +1.541) , (3)
tity A, such as H or a, can be obtained by performing a

simulation at fixed B;, IV, and p and evaluating where A is a “field” We then define x(r,A)

=9"In®(A")/3\'"| =1, where A’ is set equal to A after
performing the differentiation, as indicated. x(r,A) is a
(5Aexpl—(B—B)HD, pn two-parameter generating function. It can be shown

) that
(expl—(B—B1)HDg, pN —BG( )
= — = G ’N
where 64 =A —(A)p p n and the ensemble averages () 2(0,0) A(BG)=p\G (B1,p,N) =BG (B.p

are to be performed at constant 8, p, and N hereafter. and x(1,0) =AA. Using the definition of the generalized
Equation (2) is, then, a prescription for calculating AA4 cumulant expansion,® the moment-generating function
| ® (L) can be expanded in cumulants, and then

AA E<A>,g‘p_1v - (A>ﬂ1»P‘N

Sy BB A
2 == 12 % (= )" P (H (8 4) >C] . )
where the prime in the summation means that the term
with n =m =0 is omitted and where {)¢ denotes a cumu- The representation of A(BG) over a wide temperature
lant calculated at B8,p,N. In particular, for r =1 =0, range by a series expansion in powers of g — B, [Eq. (5)]
= (B—p)" is natural since, from thermodynamics, G remains finite
A(BG) =Y, ——'—'-—(—1)”+‘(H”)C, (5) and so A(BG) diverges as T— 0 for a nonzero simula-
n=l1 : tion temperature 7;. By contrast, it is more natural to
and for r=1 and A =0 expand quantities that remain finite as T— 0, such as H
- . or a, in powers of T—T,. Now, by rewriting Eq. (6) in
Ad=Y B—B" | 9"(a4) terms of the temperature T and then expanding (1/7)"
n=1 n! 9B"  |p=s, in a Taylor series about a simulation temperature 7', AA4
= (B—p)" can be expanded in a Taylor series about 7| by
=3 R ConeaeHe. ®) o
n= : _+w 1 |9d'a4 o\l
These results can be viewed as linked-cluster expansions® A 1§| n T T=T|(T T, 7
for the quantities A(BG) and AA.
| where
! / I=n
a4 Lyy G0 [’: I ](6A 68 HD1")c . (8)
oT! 7=, T, n=I n! [=n

Equations (5) and (7) will be the starting points for the determination of A(BG) and AA, explicitly, over a range in
temperature from information gathered at a single temperature. In order to calculate them explicitly, it is necessary to
truncate the infinite-series expansions, thereby retaining only the few, lowest-order cumulants. While this truncation, in
principle, restricts the range of parameter space that can be explored with this method, in practice one can still explore
a rather wide range of parameter space with the limited amount of information contained in the lower-order cumulants.

The system that we have simulated is a defect-free fcc crystal consisting of N =108 particles that interact via a
Lennard-Jones potential with energy and length parameters € and o, respectively, that was smoothly shifted to zero and
cut off between the fourth- and fifth-neighbor shells. Periodic boundary conditions were employed to eliminate edge
effects. The reference temperature 7' used in the simulation for the calculation of the cumulants was 0.206¢/ky (400
K for bulk copper) with corresponding lattice parameter a =1.012a,, where the zero-temperature lattice parameter
ao=1.5620. This choice of reference temperature was made for convenience and simulations performed at a different
reference temperature, 0.309¢/kp, gave equally satisfactory results.

As a first test of the utility of this method, we have calculated A(BG) for the crystalline solid by using Eq. (5) and
the first three enthalpy cumulants ((§H)")¢ (n=1,2,3) of the enthalpy distribution function calculated in the simula-
tions. From thermodynamics, A(BG) can also be calculated at constant pressure from the relation A(BG) =ff H(3')
xdp’', where H(B) is calculated in a series of simulations at different 8. In order to calculate the Gibbs free energy G
as a function of temperature, it is necessary to independently determine G at some reference temperature. For solids,
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FIG. 1. The total Gibbs free energy G/N, in units of ¢, vs
temperature 7, in units of e/kg, for a defect-free Lennard-
Jones crystal consisting of 108 particles. The solid squares are
the results of temperature integration, the solid line is the re-
sult of a cumulant expansion at a fixed simulation temperature
T =0.206¢/kp (indicated by the arrow), and the dashed line is
the result of a histogram evaluation.

this can be done at low temperatures by using the
quasiharmonic approximation. '%!!

Figure 1 shows the total Gibbs free energy per particle
G/ N (which includes the ideal-gas contribution) calcu-
lated (a) by means of the truncated cumulant expansion,
(b) from the (inverse) temperature-integration method,
and (c) from an enthalpy histogram compiled in the
simulations at temperature 7T;. Approximately 1x10°
MCS were used in the calculation of the cumulants
while about 6.3 x 10° MCS were used in order to compile
the associated histogram. As is evident from the figure,
the results obtained from the histogram method match
those. obtained from the temperature-integration method
only over a rather limited range in temperature. By con-
trast, the truncated cumulant expansion and the
temperature-integration method yield nearly identical re-
sults over a wide range in temperature (about 0.45¢/kgp,
which is approximately 75% of the melting tempera-
ture), indicating that the representation of A(BG) by
only a few terms in the cumulant expansion is satisfacto-
ry. An analysis of simulations consisting of approxi-
mately 10° MCS for systems containing N =108 to
N =512 particles reveals that the cumulants obey the ex-
pected finite-size scaling relation, (H")c «< N. Thus, even
for relatively large system sizes, the free energy can be
calculated over an equally wide range in temperature. !

The correct determination of G//NV from the truncat-
ed cumulant expansion suggests, then, that the depen-
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FIG. 2. The configurational enthalpy per particle, H/N, vs
temperature 7 as obtained from the enthalpy-temperature
curve generated from several simulations at different tempera-
tures, from a linear extrapolation based on only the first cumu-
lant, and from a cumulant analysis [Eq. (8)].

dence of other thermodynamic functions, such as the
enthalpy and the lattice parameter of the crystal, on
temperature should also be obtainable from an analysis
of a distribution function. Figures 2 and 3 are plots of
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FIG. 3. The normalized lattice parameter a/ao (where ao is
the zero-temperature lattice parameter) vs T as obtained from
the a/ao-T curve generated from several simulations at
different temperatures, from a linear extrapolation based on
only the first cumulant, and from a cumulant analysis.
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H/N and a/aq as a function of temperature as obtained
from Eq. (8) with ((§H)"¢ (n=1,2,3) and (8a(§H)")¢c
(n=1,2) and from a series of simulations at different
temperatures. The two independent determinations of
H/N and a/a, agree over a wide temperature range. It
was found that somewhat longer simulations (in this
case, approximately 7x 103> MCS) were required in order
to accurately calculate ((6H)>)¢ and (6a(6H)?%)¢ and,
consequently, H(T) and a(T).

In conclusion, we have demonstrated that thermo-
dynamic functions can be efficiently calculated at various
points in parameter space (in this case temperature)
from a simulation at one point in parameter space and,
in so doing, have identified those features of the distribu-
tion function, namely, the cumulants, which are relevant
in these calculations. The application of this method, is
of course, not limited to the isobaric, canonical ensemble
nor to homogeneous crystals, but is generally applicable
to the cases of, for example, fluids and inhomogeneous
solids (such as those with extended imperfections).'!
The dependence of other quantities, such as elastic con-
stants, on other intensive parameters, such as the pres-
sure and the chemical potential, can also be obtained by
a simple generalization of this method.
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