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We have carried out a Monte Carlo study of anisotropic 3D uniformly frustrated A V models, as a
model for the type-II high-T, superconductors. Vortex-line-lattice melting, vortex-line cutting, and en-
tanglement have been studied in relation to the superconducting phase transition.

PACS numbers: 74.60.6e, 64.60.—i, 74.40.+k

One of the main foci of recent research on the type-II
high-T, superconductors has concerned the fluctuation of
vortex lines in the mixed phase. Because of the relatively
large values of T, and rc, it is believed that the vortex-
line lattice will melt at a temperature well below that
given by the mean-field 0,2(T) line. ' Nelson'~'~' has
proposed a theory of vortex-line Auctuations in the line
liquid phase, based on an analogy with interacting bo-
sons. Interesting dynamical eFects have been suggested,
based on an estimate yielding a high energy barrier for
vortex-line cutting. ' ' ' ' In such a case, a single pinned
line would eff'ectively pin those with which it is entan-
gled, resulting in decreased Aux-Aow resistance in the
liquid phase. Brandt' ' ' has questioned several features
of this model, in particular, the estimated high barrier
for line cutting. Feigel'man has suggested an inter-
mediate disentangled liquid phase, arising from the long-
range interaction between lines near H, 2.

In view of these works, it is useful to have a well-
defined microscopic model in terms of which vortex-line-
lattice melting, vortex-line cutting, and the properties of
the vortex-line liquid may be quantitatively examined.
In this Letter we present such an investigation based on
simulations of the three-dimensional uniformly frustrat-
ed anisotropic XY model on a cubic lattice. We consider
the case where there are no random pinning impurities.
We find clear evidence that at the superconducting tran-
sition, the vortex-line lattice melts into an entangled
liquid. Transverse Auctuations of the vortex lines in the
liquid phase are found to scale like a free random walk
and the "entanglement correlation length" g, is comput-
ed. Substantial vortex-line cutting is found in the liquid
phase.

The Hamiltonian of our model is given by

/f = —g J;~ cos(0; —0, —
A;~ ),

(.ji)
where 8; is the phase of the superconducting wave func-
tion at site i, A;~'—(2e/Ac) I/A dl is the integral of the
vector potential from site i to site j, and the sum is over
nearest-neighbor sites. We use a uniform magnetic in-
duction 8=V&A along the z direction, for which the
sum of A;j around a face of any cubic unit cell obeys the

constraint

2ttf, face in x-y plane,
if+A) k+A /k+At~ =0 'h (

J; ='
J~~ along z direction. (3)

This model describes a lattice version of a type-II
superconductor. The "bare" coherence length is gp=a,
and the bare magnetic penetration length X is given by
J~ i =@pa/16tr X~ ~~, where by bare we mean the values
before renormalization due to Auctuations. Our approxi-
mation of replacing the spatially varying magnetic in-
duction by its average value 8 is reasonable in the limit
a, , «k, where a, , —Jf is the average separation between
vortex lines. We may see this explicitly by considering
the interaction between two vortex lines in our model
(1); for the isotropic case, a standard duality transforma-
tion gives 2trJ fdr~ dr2 V(r~ —r2), where V(r) is the
lattice Green's function which has Fourier transform
V~ =1/q . In contrast, the London model gives an in-
teraction Vq

= 1/(q +k ). Thus, while our model
reduces vortex-line density fluctuations on long length
scales r»X (q«X '), lluctuations on scales r«k are
well approximated. When a,, «X, our model should be
reasonable for describing the small-length-scale fIuctua-
tions responsible for melting, and the collisions between
neighboring vortex lines. As the high-T, materials are
strongly type-II with tc=X/gp»1, this condition should
be satisfied for a wide range of magnetic field below H, 2,
provided one is still well above H, i.

The vortex lines have well-defined identities in our
model. By summing the gauge-invariant phase around
the faces of cubic unit cells, gt.„,(0; —0J —A;~) =2tr(n,

f,), the integer v—orticity n, of each face a is deter-
mined. Here we restrict 0; —0i —

A;~ E ( —tr, tt) and f,
is the llux through the face (f, =f in x-y plane, f, =0
otherwise). The trace of a vortex line is then determined

where f=Ba /&p is equal to the average density of field-
induced vortex lines (a is the lattice constant, &p is the
Ilux quantum). Anisotropy may be introduced in the
model by taking

J& in x-y plane,
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FIG. 1. Helicity modulus Y and specific heat C vs tempera-
ture T. Y 0 defines the superconducting transition at
T, =1.0. Inset: A top view of the ground-state vortex-line lat-
tice. Dots give the positions of the parallel vortex lines.

by following this vorticity going in and coming out of the
cubic unit cells of the lattice. The form of the interac-
tion between bent vortex lines in this model is not preas-
sumed, but completely determined by the energetics of
the microscopic variables [0;j.

We consider here the special case of f= —,
' . In the

ground state, the vortex lines form a periodic square lat-
tice with a,,

=J5a (see inset of Fig. 1). The triangular
Abrikosov lattice found in the continuum is distorted
here due to commensurability eA'ects with the underlying
cubic lattice of the model. To investigate the behavior of
the model, we have used Monte Carlo (MC) simulations
with the standard Metropolis algorithm applied to the
Hamiltonian (1). Simulations have been carried out on
L x L x (L, + 1) cubic lattices with periodic boundary
conditions in the x-y plane and free boundary conditions
in the z direction. We have used L =10 and L, =10, 15,
and 20. A wide range of anisotropy y—:Ji~/J& =0.01-1.0
was studied. Typically, 20000-30000 MC sweeps were
used for averaging, after an initial 5000 for equilibration.
Henceforth, energy scales will be quoted in units of J&,
and lengths in units of a.

We first focus our discussion on the isotropic case.
The superconducting to normal transition can be charac-
terized by the vanishing of the helicity modulus Y
(analogous to the superfluid density; also Y —I/XR,
where kR is the renormalized magnetic penetration
length). Y in direction p in the x-y plane is given by

ge;, ccs(e, —e; —wc)(ec e)')
(ij )

gJ;, sin(OJ —0; —A;, )e;~"p, (4)
2

(ij)

where e;~ is the unit vector from i to j, and %=L (L,
+1). The specific heat C is calculated using the usual
fluctuation dissipation relation. Our results for Y (aver-
aged over gc =x,y) and C as functions of temperature T

for a 10X10X21 lattice are shown in Fig. 1. We find Y
vanishes where C has its peak, giving T, = 1.0, well
below the mean-field value' T,2"=2.5. Fluctuations
are clearly strong and important in this model.

Next we consider the melting of the vortex-line lattice.
The average transverse Auctuation of the vortex lines
(u ) is given by

(u')= g g ([r;(z) —r;(zo)l'), zo=L, /2,
1

&ILz I z=o
(5)

where r;(z) is the position of vortex line i in the x-y
plane at z, and IVI =fL is the number of lines. Below
the melting temperature, the vortex lines can only vi-

brate about their equilibrium positions. In the limit of
L, ee, (u ) should approach a finite-temperature-de-
pendent constant. Above the melting temperature, in an
entangled liquid phase, the transverse Auctuation of a
vortex line is expected to behave like a random walk in
the interaction field of all other vortex lines. (u ) should
scale with L, as a power law, (u )—L, '. The crossover
between these two types of behaviors gives the melting
temperature.

In Fig. 2, we plot (u ) vs T for L, =5, 10, 15, and
20. ' ' By the above criterion, vortex-line-lattice melting
to an entangled liquid is clearly seen to occur at T, =1.0,
the same temperature at which Y 0. Thus vortex-line-
lattice melting coincides with the loss of long-range
phase coherence. A comparison of cooling versus heat-
ing showed no hysteresis. At T, we find (u 2) 'i /a, ,

=0.45. Fitting our data above T, with the form
(u (T,L, )) =D(T)L, '+un (T), we find scaling con-
sistent with the prediction' ' vt =1 (see inset to Fig. 2).
Thus, although the bare interaction between vortex lines
is long range, for T & T, the Auctuations of the vortex
lines screen the interaction so that the transverse motion
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FIG. 2. Average transverse fluctuation (u') vs T for L, =5,
10, 15, and 20. For T & T, =1.0, (u ) is independent of L„ in-
dicating a vortex-line lattice. For T & T„(u ) increases with
L:, indicating a vortex-line liquid. Inset: (u ) vs L„ for several
T & T„demonstrating the free random-walk scaling behavior
(u ) =D(T)L.-+u((T) (solid lines are best fits). Fitted pa-
rameters D and u$ are also shown. D is related to the "entan-
glement" length g„by D=5/4(:.
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where N, is the number of cubic unit cells through which
two or more vortex lines pass. When two vortex lines in-
tersect in one cell, the choice of connections between in-

coming and outgoing lines for the purpose of determining
the r;(z) of Eqs. (5) and (7) is made randomly. w is
defined as

w = g Qe(r;(z), r, (z))
N( I~j z

(7)

where the sum is over all pairs of vortex lines, and
e(r, (.),r, (z)) E ( x, xl is the angle between the vec-
tors Ar(z)=r;(z) —rj(z) and Ar(z —1). w increases by
~z each time a given line crosses close to another
line. ' Hence ~=+ if on average each vortex line twists
with one other line by a full turn, in going down the
length L, of the system.

Our results for n, /L, and w are plotted in Fig. 3. For
T & T„n,=0, and ~ & z is independent of L, indicating
no significant entanglement. For T & T„n,/L, increases
rapidly and is independent of L„giving a constant densi-

ty of cuttings per unit length in the L, ~ limit. Com-
paring Figs. 2 and 3(a), we find that the cutting length
L,/n, is comparable to the entanglement length („ex-
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FIG. 3. (a) Cutting number per unit length n, /L. vs T.
n, =0 for T ( T, and grows rapidly for T & T„scaling linearly
with L, . (b) Mutual pair winding number w vs T For T (T„.
~ & x is independent of L:, indicating no entanglement. For
T & T„w increases with L, . Comparing (a) and (b), one sees
substantial vortex-line cutting once the lines are entangled
(w& z). The transition temperature T, and the incan field

T,2" are indicated for comparison.

of a given line behaves like a simple free random walk.
Our fitted parameters D(T) and uti(T) are shown in

Fig. 2. The diAusion constant D defines the "entangle-
ment" length, ' ' (,=( —,

' a,, ) /D(T), which is the aver-

age length it takes to Auctuate half the distance a, , the
average spacing between vortex lines.

To further characterize the properties of the vortex-
line liquid phase, we compute the line cutting density n„
and the mutual winding number of pairs of lines w. n, is
straightforwardly defined as

n, =(N, )/NI,
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FIG. 4. (a) Cutting number per unit length n, /L. and (b)
mutual pair winding w vs T/T, (y) for diff'erent anisotropies
y—=Jii/J~ =0.01, 0.075, 0.5, and l. In each case, substantial
vortex-line cutting is observed once the lines become entangled.

cept possibly for a very narrow region at T, . w also in-
creases with T & T„and we find that once w=rr, indi-
cating significant entangling, n, already gives at least
one cutting per line. For T & T„we find ~ to have the
same linear scaling with L, as (u ); hence we expect the
ratio n, /w of cutting to entangling to approach a con-
stant as L, ~. In our model, vortex-line cutting can
happen either in parallel (in which case two lines enter
the same face of a unit cell, and that face has a vorticity
of 4') or perpendicularly (in which case the two lines
enter perpendicular faces of the cubic unit cell, and each
face has a vorticity of 2rr). For 1.5 & T & T, =1.0 we
observed only perpendicular cutting. '

We have also studied the eAects of anisotropy, using a
10&&IOX 11 lattice. For y=ji/J~ =0.01, 0.075, and 0.5
we find T, =0.22, 0.35, and 0.72, as determined by the
location of the specific-heat peak. For @=0.01, T, lies
close to that of the two-dimensional problem (y=0),
which has T, =0.18. Hence we have explored the com-
plete range from nearly 2D behavior up to isotropic.
Our results for n, and w are plotted as functions of the
rescaled temperature T/T, (y) in Fig. 4. n, shows a
comparable rise above T, for all the anisotropies studied.
The rise in w at T, is steeper for the smaller y, and can
be attributed to crossover from the apparent second- (or
weak first-) order transition of the isotropic 3D model to
the first-order transition' of the 2D model. In all cases
we find substantial vortex-line cutting when the lines are
entangled.

Our lattice model (1) should be a good approximation
for the continuum when the lattice constant a is small
compared to other length scales, in particular the aver-
age spacing between vortex lines a, Our calculations
have been carried out, however, at a, ,

=J5a, due to the
need to have a sizable number of lines in a system small
enough to simulate. At this high line density, the lattice
plays a non-negligible role which makes quantitative
comparison between our results and continuum melting
theories' difficult. For example, (u ) does not have the
linear growth with T predicted by these models below
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T, . We believe this is due to the eA'ective periodic pin-
ning potential which the lattice creates for the vortex
lines. While we cannot therefore compare our value of
T, with the predictions of continuum Lindeman theories,
our results for diAerent anisotropies do fairly well fit the
predicted scaling form, T,/J~ —(J~~/J&) ' =X~/X~~. It is
similarly dificult for our model to predict the nature of
the phase transition at T„as this is likely aAected by the
commensurability of the ground-state vortex structure
with the cubic lattice, such as occurs in 2D. ' ' Never-
theless, it seems clear that fIuctuations along the length
of the vortex lines are important. In 2D (or y 0) we
find hysteresis, indicating the transition is clearly first or-
der;' however, for isotropic 3D we find no hysteresis,
suggesting that the transition is either second or weakly
first order. A second artifact of the lattice is that all
transverse motion of the lines occurs by steps which are
locally at right angles. At the relatively high density of
lines considered here, this may enhance vortex-line en-
counters at large angles where the energy barrier for cut-
ting is greatly reduced. ' We have carried out similar
calculations for the more dilute f= —,

' model. In this
case, the analysis is slightly more complicated as the
ground-state vortex-line lattice is rectangular, and thus
has a lower symmetry. Nevertheless, we find the same
qualitative behavior for (u ), n„and w near T, as for
f= —, . Numerical work on more dilute systems should
help to clarify the relation between our lattice model and
continuum superconductors. We point out, however,
that for large line densities in layered high-T, . materials,
where go is often comparable to the spacing between lay-
ers, it is not obvious that the continuum is a better ap-
proximation than a lattice.
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