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Quantum Collective Creep
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We study the phenomenon of quantum creep in bulk superconductors within the framework of weak-

collective-pinning theory. Single-vortex pinning at moderate magnetic fields as well as creep of vortex

bundles at high fields are discussed for the case of current densities near critical. In the limit of strong
dissipation and for moderate magnetic fields the basic parameter determining the tunneling rate is the
ratio p, /( (p„=normal-state resistivity, ( =coherence length), with strong tunneling realized for p, /g~ 1

kn.

PACS numbers: 74.60.6e

The classical model of flux creep in type-II supercon-
ductors predicts a linearly vanishing magnetic relaxation
rate at low temperatures. However, in a number of re-
cent experiments on oxide, ' heavy-fermion, chevrel,
and organic superconductors, the low-temperature mag-
netic relaxation rate has been found not to extrapolate to
zero, suggesting the existence of vortex motion by quan-
tum tunneling. In this Letter we describe the process of
quantum tunneling within the framework of collective-
pinning theory ' and determine the tunneling rates of
single vortices and of vortex bundles out of metastable
states.

Macroscopic quantum tunneling (MQT) has been
studied by Caldeira and Leggett and by Eckern, Schon,
and Ambegaokar for the case of an (rf) superconduct-
ing quantum interference device (SQUID). Macroscop-
ic systems are inherently dissipative and the application
of quantum mechanics to a macroscopic variable may be
questioned. Caldeira and Leggett have shown that the
quantum description can be extended to macroscopic sys-
tems and that dissipation always reduces the tunneling
rate. The possibility of quantum tunneling of vortices in

thin superconducting films has been proposed by Glaz-
man and Fogel. ' Recently, Fisher, Tokuyasu, and
Young'' have studied quantum vortex creep in disor-
dered thin-film superconductors and have found a
variable-range-hopping resistivity with a non-Arrhenius
low-temperature behavior characterized by an exponent

3 ~ Here we are studying vortex tunneling in bulk su-

perconductors for the case of a weak-pinning potential,
which is believed to be the main source of pinning in the
oxide superconductors.

Within collective-pinning theory and for low magnetic
fields a single vortex is pinned by the collective action of
defects within a characteristic pinning length L, produc-
ing a potential barrier U, against motion to the adjacent
metastable state. In an elementary tunnel process a vor-

tex segment of length —L, tunnels under the barrier U,
to its neighboring state. At higher fields the tunneling
object is a vortex bundle. The tunneling rate y is deter-

mined by the (effective Euclidean) action SE~ of the pro-
cess, @~exp( —SP /ttt), and for the weak-field, strong-
dissipation limit we find that tunneling is favored by a
small coherence length g and by a large normal-state
resistivity p„, SP~/6 cc (0/e )g/p„. A summary of the
results is given in Table I.

In the following we will construct the Lagrangian for a
single vortex and present an estimate for the vortex
mass. We describe how to determine the tunneling rate
in terms of the saddle-point solution of the Euclidean ac-
tion SE. The results are then generalized to include dis-
sipation, and finally the case of large fields, where vortex
bundles are tunneling, is discussed. For the sake of sim-
plicity, we consider here the isotropic case and defer the
discussion of the eA'ects due to anisotropy to a forthcom-
ing paper.

The Lagrangian generating the classical dynamic
equations of the vortex is

&[ul =„dz — (tl, u)' —P[u],

with the free energy functional

V[u] = dz —(B,u)'+Up, .(z, u)

Here the two-dimensional field u(z, t) is the displace-
ment of the vortex from its equilibrium position and

plays the role of the macroscopic variable describing the
system. Furthermore, M is the vortex mass per unit

length, e~ is the line tension of the vortex, and Up, „
denotes the pinning potential.

An expression for the vortex mass M can be obtained

by calculating the kinetic energy of a moving vortex or
by studying the response of the vortex to an external
force. Using different kinds of time-dependent Ginz-
burg-Landau theories corresponding calculations have

been done by Suhl' and by Kupriyanov and Likharev'
with similar results. Whereas their approach should be
valid for gapless superconductors or for temperatures
near the superconducting transition, the applicability of
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TABLE l: Geometric dimensions (R~, R~~, L, ) of the collective-pinning volume and elfective
Euclidean action (SP~) for the cases of single-vortex collective pinning at low magnetic fields

(L, & a), and for collective pinning of vortex bundles at intermediate (a & R~ & k, regime of
strong dispersion) and large magnetic fields (X & R~). c and c' denote numerical constants and

L, is the single-vortex collective-pinning length.

Regime Rii=Lb Ss /t'i
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the results to a superconductor with a finite gap at low
temperatures is unclear. We therefore present a simple
estimate for the vortex mass based on general arguments
which should hold for our situation. Our derivation
reproduces the results of Refs. 13 and 14 and thus ex-
tends their regime of validity down to low temperatures.
The basic idea is that the electronic contribution to the
vortex mass is due to the local change in dispersion
within the vortex core. The number of electrons exposed
to this change is given by N(0)erg 6, with N(0) the den-

sity of states at the Fermi level and h, denoting the ener-

gy gap. These electrons experience a relative change of
their eft'ective mass which is of the order of mh/sF,
where m and cF denote the eAective mass and the Fermi
energy, respectively. Expressing the density of states
N(0) by the electron density n and the Fermi energy ~F,
we obtain the electronic contribution to the vortex mass
M, ~

= (3tr/2) mng (A/sF ), reproducing Suhl's result.
Further simplification leads to M, ~

= (2/rr )mkF (kF
=Fermi wave vector) with agrees with the result of
Kupriyanov and Likharev. Besides this electronic contri-
bution, a second term M, of electromagnetic origin'
contributes to the vortex mass. Typically M,~))M,
and in the following we use the estimate M =M, ~.

Below we will find that in the limit of strong dissipation
the tunneling rate becomes independent of the vortex
mass and thus our qualitative estimate will not influence
the accuracy of our final results.

Within collective-pinning theory each segment of
length —I, is pinned independently, with L, determined
by minimization of the free energy (2). For a pinning
potential with a minimal characteristic length rz =g and
producing a mean-squared random force W, the result
1S

tr[(y4(2/(2tr) 2a 2gr) 4] 1/3 (3)

with No =hc/2e the fiux quantum, a = (&o/B) 't the
mean distance between neighboring vortices, and X the
London penetration depth. Note that a W and hence L,
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M
SE =J dt dz (t),u)'+P[u] ~ .

2
(4)

In order to find the eAective action of the saddle-point
solution we can again use the method of dimensional esti-
mates. It turns out that quantum creep in d dimensions
can be mapped onto the problem of thermally activated,
i.e., classical, creep in d+1 dimensions. The time axis of
the problem can be viewed as simply adding an addition-
al dimension to our minimization task. The geometric
part of the solution (L, ) has already been found above.
The estimate for the characteristic tunneling time t, is
obtained by equating the kinetic and elastic energy
densities in (4), et (g/L, ) =M (g/t, ) . The result is
t, =L, (M/st ) 't and the corresponding action becomes

Sp=t, U, =( (Ma )'

is independent of the magnetic field B. The result (3)
can be obtained from a simple dimensional estimate:
The solution minimizing the free-energy functional (2) is
characterized by the equality between the elastic and the
pinning energy, et(g/L, ) L, =g(8' aL, )'t—:U„where
we have used that adjacent metastable states are
apart such that u varies by ( on a length scale L, . The
pinning potential U, is obtained by adding up the ran-
dom forces due to the individual pins along the collective
pinning length L, . Using the estimate st=(&Pp/4rrk, )
reproduces the result (3) up to a numerical factor.

The mean-square random force W is not directly ac-
cessible by experiment. In order to express the pinning
length L, through experimentally accessible quantities
we can use the condition of a vanishing efIective pinning
barrier U, n =U, —j,@oL,(/c at the critical current den-
sity j, and express the collective-pinning length L, by j,
and the depairing current density jo, L, =g(jo/j, ) 't .

Whereas the classical thermal creep rate is determined
by the saddle-point solution of the free-energy functional
(2), the quantum tunneling rate is given by the saddle-
point solution of the corresponding Euclidean action, '
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In the limit of weak fields and vanishing dissipation the
result is independent of the collective-pinning length L,
and hence of the strength of the pinning potential.

We have checked the correctness of the above ap-
proach by calculating exactly the Euclidean action for
the instanton solution of an elastic string of length L,
trapped in a cubic model potential with a (maximal)
barrier height U~;„=U,/L, . The exact result agrees with
the above estimate up to a numerical factor of order 1.
Contrary to the situation encountered in the problem of
MQT of the superconducting phase in a SQUID, the ap-
propriate model potential is not known in the present
case. Hence, our estimates should actually provide a re-
sult as precise as we can hope to obtain, considering our

ignorance about the actual pinning potential.
In a next step we generalize our result to include dissi-

pation into the model. As shown by Caldeira and Leg-
gett the interaction with the environment can be ac-
counted for by adding a term

2

rt d d, d u(z, r) —u(z, r')
dt dt' dz

4 t —i'

to the Euclidean action (4) which results in the so-called
eA'ective action S~ of the vortex. Here g denotes the
viscous drag coefficient, ri=@OH„/c p„, with 0„ the
upper critical field. The expression (6) is nonlocal in

time and in order to treat this term we transform the
efI'ective action to Fourier space,

dM dq 1
SE 4 2z 2ir 2 icoi

M+ " co'+e(q' )u(q, co)) + U~;„(q,u) ~ . (7)

According to (7) the inclusion of dissipation into the
model leads to an increase in the (effective) mass, M, s.

=M(1+@/M~ro~) & M. This is similar to the increase
in capacitance of the junction due to dissipation as found
by Eckern, Schon, and Ambegaokar in the case of MQT
in a SQUID, where the role of the mass is played by the
junction capacitance. Note that the inclusion of dissipa-
tion leads to a dispersive mass resembling the situation
where the interaction between the vortices leads to a
dispersion in the elastic moduli. '

The saddle-point solution of (7) produces a larger tun-
neling time t, which is found by solving the quadratic
equation M,a(co, )co, =elq, , q, =2'/L„ for the time t,
=2ir/co, . The mass enhancement factor 1+q/M ~

co,
~

be-
comes equal to 1+2/[(1+v) '~ —lt, with v=4Melq, /

g . Usually, the motion of the vortex is strongly over-
damped, ' i.e., ri/M~co, ~

&) l. A rough estimate for v us-

ing parameters appropriate to oxide superconductors
leads to v=0. 1, q/M~ro, ~=40. In order to obtain this
result we express v by the ratio j,/j0=10 of the criti-
cal and depairing current densities, the resistivity p„= 100 p 0 cm, the coherence length g = 15 A, and the
Fermi wave vector kF =0.5 4

v=(32/3ir )(e p„/hg) (kF() j,/jo.
In the limit of strong dissipation the tunneling time be-
comes r, =L, rl/eI and the final result for the effective
Euclidean action is

eff
' ]/2

jo (g)
pn Jc

Our result predicts a large tunneling rate for materials
characterized by a small coherence length g and a large
normal-state resistivity p„. The quantum unit of resis-
tance is t'i/e =4.1 kA and thus quantum creep can be
observed in superconductors with a high ratio p„/g of the
order of 1 kO. In particular, the oxide superconductors
are good candidates for the observation of quantum
creep at low temperatures: Using the above values for

g, p„, and j,/jo, we obtain typical relaxation rates (1/
MQ)dM/d lnt = 6/SE = 1%. This compares favorably
with the experimental findings of Mota et al. ' and of
Fruchter et al.

Finally, we generalize our results to the case of large
magnetic fields where the tunneling object is a collective-
ly pinned vortex bundle. The crossover from single-
vortex pinning at low fields to pinning of vortex bundles
takes place when the interaction between the vortices be-
comes important, which is the case when L, =a. In or-
der to obtain the action for the vortex bundle we have to
substitute M and g by their corresponding densities
M/a and g/a and the free-energy functional P[u] be-
comes

V = d'r (Vu) '+ (V Lu) '
4 2 2

+ "(b,u)'+Up, „(r,u)
2

(9)

In a static configuration the vortices adjust to the pin-

ning potential by shear and tilt deform ations alone.
Therefore the minimal solution of (9) defining the col-
lective-pinning volume V, is characterized by the equal-
ity of the shear [c«((/R, ) ], tilt [c44((/L, ) ], and pin-

ning energy densities lg(W/V, ") '~ ], where the bundle
volume is V, =R, L, . We obtain for the bundle radius
R, =L, (c66/c44) ', for the bundle length L, =g c66c44/

W, and for the pinning energy g(WV, ) '~ =U, . Howev-

er, in the regime of (quantum) creep, i.e. , for current
densities j„the moving bundles hop into neighboring
states, leading to a considerable local compression along
the direction of the hop within the (static) neighborhood.
To minimize this compression a number of bundles will

hop together, their number being determined by the
equality of the compression and shear energy densities in

(9), c~~(g/Rp) =c66(g/R&), R4 =R, . Here R~~ is the
size of the superbundle in the direction of the hop, R~~
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=R~(c~~/c66) ' . The tunneling object thus consists of
(c~~/c66) ' bundles of volume V„where each bundle
has to tunnel under the barrier U, . Note that the critical
current density is determined by the pinning energy of
one bundle U, .

For inhomogeneous displacement fields characterized
by short wavelengths the nonlocality of the elastic con-
stants c~ t and c44 has to be taken into account. In prin-
ciple, transforming to Fourier space, the problem of
finding the correct bundle dimensions reduces to an alge-
braic one by using' c~~=c44=(8 /4tr)(1+k&X )
with k& —I/R~ the largest wave vector in the problem.
However, in the regime of strong dissipation, where
a & R~ &k, the length R& drops out of the problem:
Simple dimensional estimates cannot provide the correct
length scale R& of the bundle. This implies that the
power-law relation between the mean displacement u
=(~u(r) —u(r+R, )~ )'t and the transverse distance R,
is replaced by a logarithmic one. The latter appears in
the Larkin-Ovchinnikov formula which is valid for
u&(:

i I/2' 3/2 '—+ ln
0

3300

u=g (lo)
Lc,

The logarithmic dependence in (10) is due to the disper-
sion which is large within the intermediate-field regime
a & R& & X. The condition u(R, =R&)=g determines
the transverse bundle size R& and the remaining length
scales R [~ and L, are found by using c ~ ~

=c44 andb

c44/c66=R~/a for a & R& & X, whereas c44/c66=1 /a
for k & R&. The results are summarized in Table I.

We have now solved the geometric part of the problem
and can proceed with the dynamic aspect. As mentioned
above, the tunneling object is a collection of R~~/R& bun-
dles which tunnel simultaneously. The tunneling time t,
is thus given by that of a single bundle of size V, tunnel-
ing under the barrier U, . Equating the kinetic and shear
energy densities in the effective action we obtain in the
limit of strong dissipation the result t, =R&rt/a c66.
The action of the tunneling superbundle is given by the
action of a single bundle multiplied by the number of
simultaneously hopping bundles, SF' =t, U,"R~~/R&. The
final expressions for the three cases of weak, intermedi-
ate, and large fields are summarized in Table I. With in-
creasing magnetic field the tunneling rate is suppressed:
The vortex lattice becomes more rigid due to the interac-
tion between the fIux lines. This leads to a larger pin-
ning volume and as a consequence the eAective action in-
creases. Here we have not considered the geometric
problem of the field penetration into the sample arising
in a magnetic relaxation experiment. In a comparison
with experiment care must be taken to account correctly
for the two opposing eAects of increasing the penetration
depth of the Bean state and decreasing the tunneling rate
when the magnetic field is increased.

In summary, we have presented the theory of quantum
collective creep for current densities j, and for arbi-

trary values of the magnetic field. For strong dissipation
and for moderate magnetic fields the main parameter
determining the tunneling rate is the ratio p„/g. The
strength of the pinning potential is less important as it
enters the action only through the factor (jo/j, ) 't . In-
creasing the field, the tunneling rate is suppressed as the
interaction between the vortices becomes essential.
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