
VOLUME 66, NUMBER 25 PHYSICAL REVIEW LETTERS 24 JUNE 1991

Theory of Negative Differential Conductivity in a Superlattice Miniband

X. L. Lei
Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, China

and Department of Physics and Engineering Physics, Stevens Institute of TechnologyH, oboken, New Jersey 07030

N. J. M. Horing and H. L. Cui
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

(Received 28 January 1991)

Bloch electron conductivity perpendicular to the layers of a superlattice (period d) is evaluated using
an extension of the balance-equation approach [X.L. Lei and C. S. Ting, Phys. Rev. B 32, 1112 (1985)]
to narrow-band transport. The perpendicular peak drift velocity v~ and the critical field E„at which the
drift velocity peaks, are analyzed as functions of miniband width. Our theoretical prediction that E,.d
increases with decreasing miniband width agrees well with the data of Sibille et al. [Phys. Rev. Lett. 64,
52 (1990)],even for the samples of narrowest miniband width in their experiment.

PACS numbers: 72.20.Ht, 72. 10.Bg, 73.20.Dx

Twenty years ago, Esaki and Tsu' proposed that a
man-made superlattice structure in which electrons move
in a periodic potential on a scale of many lattice con-
stants would facilitate the observation of quantum-
mechanical properties of Bloch states in a new domain of
physical scale. The narrow wave-vector minizones and
the narrow energy bands make it possible for electrons to
be accelerated with moderate electric fields beyond the
inflection point of the curve of energy e versus crystal
momentum k, entering a regime in which t) e/r)k is neg-
ative, leading to the prospect of a negative diA'erential
conductance (NDC). Subsequent observations of NDC
in carrier transport perpendicular to the superlattice lay-
ers, however, have been due to the formation of highly
localized, high-field domains. It was not until the past
few years that perpendicular carrier motion was clearly
demonstrated to occur through a Bloch-type miniband
state. Recently Sibille et al. , performing systematic
measurements and analysis on a series of small-period
superlattice samples, were able to show that perpendicu-
lar NDC was observed with certainty, and that Bloch
electron conduction through the superlattice miniband is
responsible for this negative diA'erential mobility over a
large range of superlattice parameters. They were able
to extract the peak drift velocity v~ and the critical field

E, (at which the drift velocity peaks) in the velocity-field
(v-E) curve by analyzing the experimental data. While
their results definitively exclude the hopping transport
mechanism between Wannier-Stark quantized levels,
in favor of Bloch miniband transport, the behaviors of v~

and E,. which they observed as functions of miniband
width are only in very crude agreement with the theory
of Esaki and Tsu. '

There have been several Monte Carlo calculations '

on superlattice miniband transport since the pioneering
work of Esaki and Tsu. However, a detailed theoretical
investigation, even a numerical one, which facilitates
direct comparison with experiments, is still lacking.

There remains an urgent need to establish a more sophis-
ticated theory, preferably an analytical one, to provide a
readily accessible and detailed evaluation of the perpen-
dicular Bloch transport of carriers in a superlattice. In
this Letter we report a convenient and succinct calcula-
tion based on a balance-equation theory' extended' to
the case of Bloch transport carriers in a superlattice
miniband. The idea of this approach is to treat the
transporting carriers as a many-particle system and
focus on the motion of its center of mass, in contradis-
tinction to methods dealing with individual particle dy-
namics. We assume that the conducting carriers of the
superlattice are free to move in layers (x-y plane), but
are subject to a periodic potential in the z direction, with
the single-electron state described by a wave vector
k=(k~~, k-), —tr/d & k- ~ n/d, d being the period of
the superlattice, and the wave function written as
—exp(ik~~ r~~)pt, (z). We employ tight-binding sums for
the envelope function pt, (z) and e(k) =k~~/2m+e~(k. )
for the energy disperison relation, with

ei(k.-) = —, d, (1 —cosk d),
h, being the miniband width. The system under con-
sideration involves N interacting electrons in this single
miniband under the inAuence of a uniform electric field
E=Ez, subject to impurity and phonon scatterings. The
total Hamiltonian H of the system is the sum of a pho-
non part H~h, electron-phonon and electron-impurity in-
teractions H,~,H„, a uniform electric-field potential H~
= —eE QI ri, and a band-related eAective Hamiltonian

H„=g e(PI ) +0„,
J

representing the electrons in the single energy band with
the complement of electron-electron interactions H„.
p~ —= —i V~ and r~ are momentum and position operators
of the jth electron. It is convenient to introduce the
center-of-mass position and momentum operators

3277



VOLUME 66, NUMBER 25 PHYSICAL REVIEW LETTERS 24 JUNE 1991

defined as R =N ' QJ. r~. and P =g~ pj, and the relative
electron position and momentum operators r~ =r~ —R,
pJ =pj —P/N. Our theoretical approach involves the
determination of the statistical averages of the rate of
change of the electron energy (H, ) = —i([H„H]) and
the rate of change of the center-of-mass velocity (v)
= —i([v, H]), with v= —i[R,H]. The statistical aver-

ages are taken with respect to the density matrix evolv-

ing from an initial state in which the center of mass
moves at a constant momentum Pd ——Npd and relative
electrons are subject to a thermoequilibrium distribution
with temperature T„which generally divers from the
lattice temperature T.

The steady-state eAective-force and energy balance
equations, obtained from (v) =0 and (H, ) =0, take the
form

eE/m, *+A;+A~ =0, (3)

eEvd —&=0, (4)
with scattering interactions treated explicitly to lowest
order. Further implicit scattering dependence occurs
through the roles of vd and T„as discussed in detail in

Refs. 13-15, where the correspondence with other ap-
proaches to transport theory is elucidated. Here we in-

troduce an ensemble-averaged inverse-efIective-mass ten-
sor %';~ (i,j =x,y, z), with %', =%~~=1/m, %';&J=O,
and

d'ei(k, )
,
' f(e(k), T, )

m,* N k dk,'

to describe the response of the band electron system to
an external field. Furthermore, we identify the average
drift velocity of the carrier system as

vd =—g v(k, )f(e(k), T,),2

where v(k, ) =de~(k, )/dk, is the velocity function in the
z direction. In the above equations,

f( e(k), T, ) = [exp([e(k) p]/T, )+—1j

is the Fermi distribution function at the electron temper-
ature T, ; p is the chemical potential determined by the
condition N =2+qf( (ek), T, ), and

e(k) =eg„, +e)(k, —pd)

is the energy of the relative electron. In the effective-
force balance equation (3), A; is the frictional accelera-
tion due to randomly distributed impurities of density nI,

Z I
u (q) I 'Ig(q. ) I

'[v(k. +q, ) —v (k, ) ]~(e(k+ q) —e(k) )
2ÃnI f(e(k), T, ) —f(6(k+q), T, )

N kq I e(q, e(k) —e(k+ q) ) I

'
and A~ is the frictional acceleration due to phonons,

2 IM(q, ~) I'Ig(q. ) I'4 (k, +q, ) —.(k, )la(e(k+q) —e(k)+ n, ,,)
k, q, X

f(e(k), T, ) —f(e(k+q), T, ) n
x n

I e(q, e(k) —e(k+ q) ) I

'
.-(k) —e(k+ q)

Tp
(10)

In energy balance equation (4), W is the energy-loss rate per electron from the carrier system to the phonon system,

W= g IM(q, k)I'Ig(q, )I'o„8(e(k+q) —e(k)+i1,,,)
k, q, X

f(e(k), T, ) —f(e(k+q), T, )x n
I e(q, s(k) —e(k+ q) ) I

'
e(k) —.-(k+ q)

T
"

T,

In the above expressions u(q) represents the impurity
potential, M(q, k) is the electron-phonon matrix element
for phonons of wave vector q in branch X, having fre-
quency Qqq, n(x) =(e"—1) ' is the Bose function, and
e(q, rv) is the dielectric function of the periodic superlat-
tice for carriers in the lowest subband within the
random-phase approximation, evaluated at the electron
temperature T, . g(q, ) is a form factor determined by
the wave function of the superlattice miniband. In the
extreme tight-binding limit for the envelope function it
is simply the form factor of a single quantum well:

r a/2
g(q, ) =(2/d)„dzI&(z) I cosq, z,

p(z) being the single-well function and a the well width.

The meaning of Eqs. (3) and (4) is physically clear.
Equation (3) bespeaks the balance of the resistive force
and the electric force experienced by the center of mass,
a particle having charge Ne and variable mass Nm,*.
Equation (4) indicates that the energy supplied by the
electric field is dissipated to the phonon system.

Because of the appearance of the center-of-mass
momentum in e(k) [Eq. (8)], the ensemble-averaged in-
verse eff'ective mass 1/m,*, the average drift velocity vq,
and the other observable quantities are functions of the
electron temperature T, and the center-of-mass momen-
tum pd. The eAective-force and energy ba1ance equa-
tions enable us to determine T, and pd and thus all the
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FIG. 1. Calculated drift velocity at lattice temperature
T =300 K as a function of electric field for a series of
GaAs/A1As superlattices with N, =2&&10'0 cm '-, d =57 A,
and weak-field mobility pa=2000 cm'/Vs at 4.2 K, having
various miniband widths measured in units of temperature as
follows: curve 1, h, =300 K; curve 2, 6, =500 K; curve 3,
h, =700 K; curve 4, h, =900 K.

FIG. 2. Electron temperature as a function of electric field
for the same series of superlattices as in Fig. 1.

(a)

physical quantities for a given electric field E.
The balance equations (3) and (4) have been solved

numerically for pd and T, as functions of the electric
field E at various lattice temperatures T, carrier sheet
densities N„s uperlattice periods d, and miniband widths
6,, with parameters pertinent to the I -valley electrons in

the GaAs/AIAs superlattice of the experiments of Sibille
et al. ' Scatterings due to impurities, polar-optic pho-
nons, and acoustic phonons (including deformation po-
tential and piezoelectric couplings) are taken into ac-
count. Almost all the material parameters are known
(such as the electron effective mass, optic-phonon fre-
quency, static and optical dielectric constants, longitudi-
nal and transverse sound velocities, deformation poten-
tial, and piezoelectric constant). The only adjustable pa-
rameter involved is the impurity scattering rate. A sam-
pling of our results for drift velocity vd and electron tem-
perature T, is given, showing their dependences on the
electric field, in Figs. 1 and 2 for several miniband
widths. In all the cases investigated the velocity-field
curve exhibits negative diAerential mobility with a peak
drift velocity vp at critical field E,. To compare with the
experiments of Sibille et al. , we plot v„/d and E,d as
functions of miniband width d, in Figs. 3(a) and 3(b).
The experimental data are taken from the published
figures in Ref. 6. Our theoretical curves are calculated
assuming that the treated family of superlattices, with
diAering miniband widths, have the same material pa-
rameters and the same impurity scattering rate. The
latter is the only parameter which may be adjusted to fit
the data. The theoretical curves of the present work are
in remarkably good agreement with the experimental
data. The only exception is the case of h, =160 meV,
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FIG. 3. Dependences of v~/d and E,d on the miniband
width h, . Solid curves are calculated using balance equations
(3) and (4) at T=300 K for GaAs/A1As superlattices with
electron sheet density Ã, =2X10' cm and a fixed impurity
scattering rate. Experimental data (open circles) are taken
from Sibille et al. (Ref. 6). Values of vp/d and E,d based on
Esaki-Tsu theory (with r =0.1 ps) are also shown (as dot-
dashed lines).
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which exhibits a lower t~/d and a higher E,d. This was
interpreted by Sibille et al. as the onset of the I -X Gunn
transfer. Another possibility is that this superlattice
has stronger impurity scattering. The present theory
predicts an increase in E,d with decreasing h, for the first
time, in favorable comparison with the experimental ob-
servations. This strongly supports the conclusion of Si-
bille et al. that miniband Bloch transport is responsible
for the observed NDC. Even for the samples investigat-
ed having smallest miniband width, Wannier-Stark
quantization does not appear necessary to interpret the
experimental data. For comparison, we have also includ-
ed the Esaki-Tsu predictions' [v~/d =0.25k/lrt and F,d
=h/er, for a sinusoidal si(kz); r is the scattering time]
in Figs. 3(a) and 3(b). The nonlinear balance-equation
transport dynamics employed here seem to provide an
adequate basis for a refined theoretical resolution of the
modern classic problem of superlattice miniband trans-
port featuring negative diA'erential conductivity as en-
visioned by Esaki and Tsu.

This work was supported by the NEC Research Insti-
tute of Princeton, New Jersey.

'L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

~L. Esaki and L. L. Chang, Phys. Rev. Lett. 33, 495 (1974).
3R. A. Davies, M. J. Kelly, and T. M. Kerr, Phys. Rev. Lett.

55, 1114 (1985).
4K. K. Choi, B. F. Levine, R. J. Malik, J. Walker, and C. G.

Bethea, Phys. Rev. B 35, 4172 (1987).
5B. Deveaud, J. Shah, and T. C. Damen, Phys; Rev. Lett. 58,

2582 (1987).
A. Sibille, J. F. Palmier, H. Wang, and F. Mollot, Phys.

Rev. Lett. 64, 52 (1990).
7A. Sibille, J. F. Palmier, C. Minot, and F. Mollot, Appl.

Phys. Lett. 54, 265 (1989); A. Sibille, J. F. Palmier, F. Mollot,
H. Wang, and J. C. Esnault, Phys. Rev. B 39, 6272 (1989); A.
Sibille, 3. F. Palmier, H. Wang, J. C. Esnault, and F. Mollot,
Solid State Electron. 32, 1461 (1989).

sR. Tsu and G. Dohler, Phys. Rev. B 12, 680 (1975).
J. Bleuse, G. Bastard, and P. Voisin, Phys. Rev. Lett. 60,

220 (1988).
'OP. J. Price, IBM J. Res. Dev. 17, 39 (1973).
''D. L. Andersen and E. J. Aas, J. Appl. Phys. 44, 3721

(1973).
' M. Artaki and K. Hess, Superlattice Microstruct. 1, 489

(1985).
'3X. L. Lei and C. S. Ting, Phys. Rev. B 32, 1112 (1985).
'4X. L. Lei (unpublished).
'5N. J. M. Horing, X. L. Lei, and H. L. Cui, Phys. Rev. B 33,

6929 (1986).

3280


