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A New Universality Class for Kinetic Growth: One-Dimensional Molecular-Beam Epitaxy
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We study a new model for kinetic growth motivated by the physics of molecular-beam epitaxy where
the deposited atoms can relax to kink sites maximizing the number of saturated bonds. The model is
thus intermediate between the well-known random-deposition model with no relaxation and the
random-deposition model with perfect relaxation, producing growth exponents which are in between
these two extremes. In particular, the growth exponent l1, defining the interface width W t~ a—t inter-
mediate times, is found to be P = 0.375+ 0.00S in d = 1 +1 dimensions. Our estimated a for this model
is around 1.5 for 1+ 1 dimensions.
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Kinetic growth phenomena have been a very active
research area' in the last five years. There are, in our
opinion, three central issues in the theoretical study of
kinetic growth: (1) What are the universality classes'
for various kinetic growth models? (2) What are the
critical dimensionalities for the various models? (In
particular, are there kinetic phase transitions in physical-
ly realizable dimensions?) (3) What, if any, is the rela-
tionship between various kinetic growth models and ac-
tual vapor-deposition growth processes?

In this Letter we present results for a new kinetic
growth model which touches upon the first and the third
of these three questions. In fact, we believe that our
model represents a new universality class which has not
been, at least to the best of our knowledge, discussed be-
fore in the literature. In addition, we feel that our
growth model is close in spirit to the technologically im-
portant molecular-beam-epitaxy (MBE) technique of
crystal growth. In that sense, this paper represents an
eA'ort towards bridging the gap that currently exists in

the literature between the MBE growth simulation stud-
ies and kinetic growth studies —it is quite surprising
that these two subjects have evolved in the literature to-
tally independent of each other even though there is ob-
viously a close connection between the two.

Kinetic growth has been studied via two different
deposition models, namely, the random-deposition (RD)
and the ballistic-deposition (BD) model, each of which
can incorporate relaxation (RDR and BDR models, re-
spectively). It is believed that all these models exhibit
dynamic scaling properties given by

8'—t~ for to&&t&&t, ,

8'—L' for t)&t, ,

where a and P are the kinetic growth exponents; W'is the
interface width (or roughness) defined as W
=g;N '(h; —h), with h the average height of the in-
terface, h; the height of ith site (in a lattice model), and
N the total number of surface sites; L is the (finite) size
of the growing surface in d —1 dimensions; and to and t,

are model-dependent characteristic time scales which
define the initial transient and the saturation time, re-
spectively. The general dynamic scaling law for kinetic
growth in a d-dimensional system (the growing surface
has d —

1 dimensions) is W(L, t) —L'f(t/L'), where f is
the scaling function and the exponent z =tt/P. It is clear
that t, —L', and f(x) —1 for x»1 and f(x) —xs for
x«1. It is known that in d= 1+1 dimensions, P= —,

'

(RD), —,
' (RDR), —,

' (BD and BDR).
An important point to note is that the dynamic scaling

law for kinetic growth depends crucially on there being
no characteristic time scales in the RD (and RDR) and
BD (and BDR) models. Any relaxation or diA'usion of
individual atoms is instantaneous in these models and,
therefore, atoms are allowed to relax only once, after
which they are fully incorporated in the system and do
not participate in the growth dynamics at all. In MBE
growth, on the other hand, atomic diffusion follows an
Arrhenius activation behavior where each atom hops
continuously (i.e. at all times) according to a hopping
rate R =Roe " ', with Eq the site-dependent activa-
tion energy usually taken to be E& =Eo+nE&, where Eo
is the activation energy of a free atom with no bonds, Eg
is the binding energy per bond, and n is the number of
nearest-neighbor bonds that the hopping atom has in its
initial site. (Usually, Ro has a weak temperature depen-
dence given by Ro =2ktt T/h. ) Thus, MBE growth
differs in an important respect from the kinetic growth
models in the sense that in MBE one has two different
and competing kinetic rates (or, equivalently, two com-
peting time scales), namely, the atomic deposition rate
Ro (defined as the number of atoms deposited per site
per unit time) and the hopping rate R, whereas in kinetic
growth models one only has a deposition rate. Clearly,
for all nonzero values of R/Ro, MBE growth is in a
crossover regime where random deposition and continu-
ous hopping compete with each other and produce an
effective growth exponent. As we argue below there is a
fundamental difference between MBE growth and the
Edwards-Wilkinson (or Kardar-Parisi-Zhang) model in

that MBE belongs to a different universality class. In
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MBE, the atoms chemisorb to saturate bonds and, there-
fore, the atoms relax to the nearest local energy minima
(which is not necessarily the local height minima as in
these other models). Thus, the crossover in MBE growth
discussed above is to a new universality class to be dis-
cussed below.

As a starting point for more complete studies, the
simulation results presented in this paper are for two-
dimensional growth whereas real MBE obviously deals
with the growth of three-dimensional crystals. This
simplification allows comparison with definitive kinetic
growth results described above and serves the purpose of
establishing a new universality class associated with
MBE. To avoid any confusion we refer to our growth
process as one-dimensional MBE (1D MBE), emphasiz-
ing the fact that the growing interface in our simulation
is one dimensional. The crossover phenomena discussed
above can be seen in Fig. 1 where our calculated P for
the 1D MBE growth of a square lattice is plotted as a
function of R/RD for finite systems varying in size be-
tween L =64 and 32768. Note that for two-dimensional
square-lattice simulation the number of nearest-neighbor
bonds varies between 1 and 3, and therefore, the hopping
rate R can take three difI'erent values depending on the
number of bonds to be cut to enable the atom to hop.
For the 1D MBE growth simulation results shown in this
paper we choose E0=0.3 eV and E~ =1 eV which are
semiquantitatively consistent with Si and GaAs. All the
results shown in this paper correspond to RD =1, i.e., we
grow one atomic monolayer per second. We are also us-

ing a nearest-neighbor hopping model and the solid-on-
solid (SOS) approximation which implies that the only
possible n entering the definition of the hopping rate R
are 1 and 2, producing exponentially different hopping
rates. In turns out that our numerical results change lit-
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FIG. 1. The calculated effective exponent p as a function of
the ratio R/RD of the deposition rate to the hopping rate in the

ID MBE growth model. Inset: The calculated p as a function

of temperature T which defines the hopping rate via an Ar-
rhenius rule (one has RD = R for T = 500 K for the parame-
ters used). Dashed line: P=0.375. (The system size is be-

tween 64 and 16384 depending on T).

tie if we set R =0 for n =2 and the value of R used to
define the abscissa R/RD in Fig. 1 is the fastest diffusion
rate in the problem corresponding to n= 1. As an inset
of Fig. 1 we also show the P as a function of growth tem-
perature.

For R/RD =0, clearly, the growth is via random depo-
sition with no diffusion with a growth exponent P=0.5

corresponding to the Poisson distribution of the deposited
columns. For high temperatures, or equivalently R/RD
»1, each atom hops many times before the next atom is
deposited and the effective exponent in a finite-size cal-
culation approaches zero, indicating a smooth surface
arising from saturation. The actual dependence of the
effective exponent P on R/RD in Fig. 1 is controlled by
finite-size efI'ects which are unavoidably present in this
crossover regime of 1D MBE growth. In particular, for
R/RD«1, we are limited by finite-time effects in our
simulation with the effective P close to 0.5, whereas for
R/RD»1, we are limited by finite-size effects and the
eAective exponent tends towards zero. %'e argue later
that the actual 1D MBE growth exponent is P =0.375,
and it is interesting to note that around R/RD —1

(where the finite-size effects are minimal), P is indeed
close to that value.

To answer the question of which universality class the
1D MBE growth process really belongs to, we now intro-
duce a new growth model incorporating the atomistic
hopping of 1D MBE growth without, however, the prob-
lems of having two competing kinetic rates and the con-
tinuous hopping of all the atoms. In our new model we
preserve the random deposition and the solid-on-solid as-
pects of the other model, but incorporate dift'usion by let-
ting each atom hop with a probability p to the nearest
kink site within a finite distance l of its initial deposition.
We avoid any equilibration crossover problem of the 1D
MBE growth process (cf. Fig. 1) by letting each atom
complete its diffusion instantaneously (i.e., before the
next atom is deposited). Thus, the new model has two
crucial differences from the 1D MBE growth model: (1)
We have only one rate in the problem, namely, the depo-
sition rate (and no diffusion or hopping rate), and (2)
each atom is allowed to relax only once and not continu-
ously. As mentioned above our model is also fundamen-
tally different from the RDR (and the BDR) model be-
cause the atom relaxes only to the nearest kink site and
not to the nearest local height minima. The probability
p (with 0 & p ~ 1) and the diffusion length I (with l an
integer satisfying 0 & I & L, where L is the lateral system
size) allow us to study the details of the model and the
nature of the universality class.

It is clear that our new model is in between the RD
and RDR models in its surface morphology (i.e., 8' in

the new model should be smoother than the RD model
but rougher than the RDR model). Thus, P in the new
model should satisfy the inequality

~ &P&2
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FIG. 2. The calculated P as a function of the diffusion prob-

ability p for a number of diA'erent diAusion lengths l in the new

growth model. Inset: The same for the well-known model of
random deposition with instant and complete relaxation (Refs.
3 and 7). The different symbols indicate different values of l
[=I (circle), 2 (square), 3 (triangle)]. (The system size
L =1024l and larger. ) W

]Q -(b)

= 3/8

Our simulation results indicate that P in our new growth
model is given by

10
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independent of the values of l and p. We, therefore,
propose that 1D MBE growth (for R/RDWO) belongs to
a new universality class which is described neither by the
Edwards-Wilkinson ' nor by the Kardar-Parisi-Zhang
model, but by a new universality class lying in between
the RD and the RDR models and defined by the ex-
ponent of Eq. (2).

In Fig. 2 we show our calculated values of p for the
new model as a function of p for different values of the
diffusion length l. We have carried out a large number
of simulations on system sizes varying between I. =32
and 32768, and have typically averaged over 32 to 1024
runs to obtain our P from a linear regression analysis of
the log8' vs logt plots. As an inset we also show our re-
sults for p in the RDR model where we introduce l and p
exactly in the same fashion as discussed above except
that the atoms now diffuse to the Iowest local kink rather
than the nearest kink (within a distance l of the original
deposition and with a probability of diA'usion p). We
have explicitly verified that for either l or p =0 we recov-
er the expected RD result of P=0.5. One can see from
our result in the inset of Fig. 2 that P =0.25, consistent
with the Edwards-Wilkinson result.

In Figs. 3(a) and 3(b) we show some actual plots
(averaged over 32 to 1024 runs) of W as a function of
time in our new model for various values of p and l.
Consistent with the scaling laws of Eq. (1) one has three
diA'erent regions in the W tplot —for short t -(((tp 1,
we use 1 layer/sec deposition rate), one always has
p=0.5 due to the random-deposition process; for inter-
mediate t, we have p = 0.375 defining the new universal-
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FIG. 3. Log-log plot of the calculated interface width (W)
against the growth time (t): (a) in the new model for
l = 1, p =1 and for different system sizes L; (b) in the new

model for i =3, L =1024 and three values of p; (c) in the ID
MBE model at T =500 K for various values of L.

ity class; and then for large t (»t, ), one has saturation
so that p =0 [the saturation regime is not shown in Fig.
3(b)]. In Fig. 3(c) we plot W as a function of t for the
1D MBE growth model at T=500 K for various system
sizes.

It is interesting to speculate on the nature of the con-
tinuum model which corresponds to this new universality
class (in the sense that the Edwards-Wilkinson' or the
Kardar-Parisi-Zhang equation corresponds, respective-

ly, to RDR or BD growth). It turns out that the macro-
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scopic linear Langevin equation, describing ' mass
diffusion under a chemical potential gradient, which is
given by t)h/Bt = vV h+t) (where q is the noise and v is
related to surface diffusion), has the dynamical ex-
ponents P =(5 —d)/8, a =(5 —d)/2 with the scaling law
tt/P=4. (This result is obtained by a trivial Fourier
transformation of the linear equation. ) In d = 1+ 1,
these exponents agree very well with our simulated re-
sults. Thus, the exponents of 1D MBE growth are ap-
parently well described by this simple diffusion equation
which has been known for a long time. It is not clear
why our growth model should be exactly described by
this continuum equation containing only the fourth-order
gradient term of chemical-potential-gradient-driven
diffusion. One would have thought, particularly for
l & 1, that the continuum equation for 1D MBE growth
should be substantially more complicated. We consider
the issue of the connection between our atomistic growth
model and continuum growth equations to be open and
we are currently exploring this connection.

In summary, we propose a new growth model (where
the atoms relax to the nearest kink sites) which we be-
lieve represents a new universality class closer in spirit to
the 1D MBE growth. The growth exponent P for the in-
terface roughness in this model has a value of
0.375%-0.005 in d= 1+1 dimensions, which lies inter-
mediate between the RD (P =0.5) and the RDR
(P=0.25) models. We emphasize that the higher value
of P implies a much rougher surface growth profile in
this model than in either the BD (P =0.33) or the RDR
(P=0.25) growth model. Since 1D MBE itself is not a
realistic growth process, we propose experiments on vici-
nal semiconductor surfaces where atoms will chemisorb
at kink sites and the step propagation should follow the
proposed new universality. Many more results with ac-
curate values for a (= 1.47 ~0.1, according to our pre-
liminary estimate) and with the details of the surface
morphology will be published in a longer paper.
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Note added. —After our work was submitted for pub-

lication we received a preprint from Wolf and Villain"
which independently obtains some of the results con-
tained in this paper. Another recent paper (Golubovic
and Bruinsma' ) discusses the continuum growth equa-
tion ' without any numerical results.
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