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In this paper we report both experimental and theoretical results on a Rayleigh-Bénard convection ex-
periment with a static spatially periodic forcing. For reduced Rayleigh number of order 100, the system
undergoes a secondary Hopf bifurcation involving novel and surprising spatially inhomogeneous tem-
porally periodic states. We give a description of these various inhomogeneous states, and develop a sim-
ple phenomenological model based on symmetry considerations which seems to capture all the essential

qualitative features.

PACS numbers: 47.10.+g, 05.45.+b, 47.20.Ky

We have modified a standard large-aspect ratio, one-
dimensional Rayleigh-Bénard experiment by adding reg-
ular arrays of small bumps on both the upper and lower
plates of the convective cell.! The distance between two
bumps has been chosen equal to the mean wavelength
chosen by the free normal convection in the same experi-
mental conditions, and the size of the knobs is about
one-sixth of the height of the box. A priori, as we ex-
pected the hot fluid currents to rise vertically from the
bottom bumps, the aim of this spatial forcing was to lock
the roll positions and therefore to avoid the coexistence
of various stable wavelengths at high Rayleigh number.
But, in fact, it turns out that above the convection
threshold, the spatial forcing gives rise to an unexpected
parity-symmetry-breaking steady state.>® The currents
are no longer vertical, but tilted either to the left or to
the right, making an angle 6 with the vertical line. As
for the ferromagnetic transition, this symmetry breaking
can lead to topological parity defects asymptotically con-
necting regions with opposite incline. When further in-
creasing the Rayleigh number, the system reaches time-
dependent regimes, characterized by an oscillating of the
direction of the hot fluid current around the mean tilted
position. Surprisingly these first time-dependent states
are really not homogeneous. In this Letter we report
some typical situations with coexistence of stationary
and oscillating regions, which cannot be explained by
means of a subcritical bifurcation. We develop a phe-
nomenological model based on Ginzburg-Landau-type
equations* and describe the mechanisms responsible for
this unexpected spatial behavior.

Recent one-dimensional experiments on Rayleigh-
Bénard convection™>® have already reported the existence
of a secondary Hopf bifurcation occurring on a station-
ary space-periodic pattern. From a theoretical point of
view, a quantitatively good agreement has been obtained
with phenomenological models which consider only two
order parameters, one for each symmetry-breaking tran-

sition.” In all cases, even for a subcritical secondary
Hopf bifurcation, the amplitude of the oscillations near
the threshold has always been reported to be almost the
same throughout the cell. On the contrary, for the
forced Rayleigh-Bénard convection, the first time-de-
pendent states are really not homogeneous. Besides the
situations where the inhomogeneities are obviously relat-
ed to the presence of parity defects, there exist some
unexpected cases where the hot currents, for example, all
tilted to the right, are stationary in the left part of the
convection cell and oscillating in the right part (Fig. 1).
Changing the Rayleigh number varies the amplitude of
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FIG. 1. Experimental results obtained for e¢=150. (a)
Black corresponds to the hot fluid currents and white to the
cold ones. The picture shows the evolution of the convective
pattern vs x and . (b) Schematic plot illustrating the mean
tilting of the hot current.
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FIG. 2. Same as for Fig. 1 but now ¢=80 and the spatial
structure displays a parity defect of type II almost in the center
of the box.

the oscillations as well as the length of the stationary re-
gion. This situation is absolutely symmetric and an in-
cline of the hot currents to the left corresponds, for the
same value of the temperature gradient, to a state with a
left-oscillating and a right-stationary region.

The situation is much more complex when topological
parity defects are present, especially because the two
kinds of defects do not play a symmetric role. The de-
fects of type I, connecting a region with positive 6 at
— oo to one with negative 0 at + oo, are usually associat-
ed with a decreasing or even a vanishing of the oscilla-
tion amplitude at the defect core [Fig. 2(b)]. On the
contrary, at the core of type-II defects [6(—e0) <0,
6(+ o) > 0] higher amplitudes are often observed. We
want to report here two typical situations. In the first
one obtained at ¢e=(Ra—Ra.)/Ra, =80, all of the tilted
pattern is stationary except the core of a defect (II)
which slowly oscillates (Fig. 2). On the contrary, in the
second situation, ¢ =100, only the core of the defect (I)
is stationary (Fig. 3). Not only can the amplitude and
the frequency change, but also the defect shapes may
change. For example, we have observed type-II defects
separating regions with stationary tilting from regions
with oscillating hot currents (Fig. 4).

From a phenomenological point of view, the descrip-
tion of both the parity transition and the breaking of the
time translational symmetry requires two order parame-
ters A and B slowly varying with respect to space and
time. The angle 6, which is one of the most relevant
macroscopic physical quantities, should then be ex-
pressed versus 4 and B as

0(x,t) =A(x,t)+RelB(x,t)e]e(x)+ -+, (1)
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FIG. 3. Same as for Fig. 1 but now é=100 and the spatial

structure displays a parity defect of type I almost in the center
of the box.

where o is the pulsation and £(x) the spatial mode of
the Hopf bifurcation, and where the dots stand for
higher-orders terms. 4 and B may be considered as
measures of the amount of symmetry breaking since
A =0 corresponds to the parity-symmetric situation and
B =0 to the absence of oscillation. In spite of the spatial
inhomogeneity of the temporal behavior, we choose £(x)
to be constant in the box, as is usual for a Hopf bifurca-
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FIG. 4. Same as for Fig. 1 but now ¢=100. The parity de-
fect of type II near the left boundary separates a stationary re-
gion from an oscillating one.
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tion in a closed system. The time evolution equations for
A and B can then be derived from symmetry considera-
tions. The global invariance of the set of solutions with
respect to the parity (x— —x, 8— —6) and the time
translation (t— t+¢¢) implies that thé equations are in-
variant under the following transformations:

x——x, A——A, B— —B,
| @
t—t+¢/w, A— A, B— Be'.

Experimentally the characteristic variation lengths of A4
and B are almost the same. Assuming then the two or-
der parameters to be of the same order of magnitude
leads to equations of the form

94 _ . 9B - 0B 5
== == —B-— +
Y i6 Bax Bax +(u+v|B|»)A4
2
+pa’+ad 10w,
dx
3)
0B B A
3—2414%;‘: Z||+Z|2A2+Z|3%C‘ B
2
+z2|3|23+z3g l§+0(4),
X

where &8, u, v, B, and a are real coefficients while the z;
are complex. In the regime of parameters of our interest
(e==70), i.e., quite close to the second bifurcation, the
parity-breaking structure is experimentally very stable,
and seems never to be affected by the dynamical behav-
ior. In what follows, we will then assume that § and v
are equal to zero such that the equation for A exactly
reduces to the Landau equation for the ferromagnetic
transition.

On the contrary, the coupling terms in the second
equation cannot be neglected, if one wants to understand
the spatial inhomogeneity. At the lowest order, z4A4
X 8B/dx is the first term invariant under the transforma-
tions (2). Its real part acts as an effective group velocity
and we will show later that it is relevant for the distinc-
tion between the absolute and convective instability
mechanisms.® Its imaginary part has to deal with the
preferred wave vector of the oscillation and the Eckhaus
instability.® The other coupling terms renormalize in a
way, an already existing coefficient. In the effective B
eigenvalue the real parts of z,4 2 or z,30A4/8x describe
modifications of the oscillation amplitude due to the par-
ity pattern. When topological parity defects are present,
the first term corresponds to localized symmetric varia-
tions, while the effect of the other depends on the defect
sign. The imaginary parts of these coefficients stand for
local renormalizations of the oscillation frequency, with
a symmetric and an antisymmetric action, respectively.

We have numerically simulated Eqgs. (3) with a sec-
ond-order accurate space and time finite-difference
scheme. We have imposed rigid boundary conditions

for both order parameters [4(0,:) =B(0,t) =0, A(L,t)
=RB(L,t) =0] and have used numerical boxes of various
lengths from 60 to 300, with a number of collocation
points from 300 to 8192. Finally, a very small per-
manent Gaussian noise has been added in order to simu-
late the experimental fluctuations and to sustain struc-
tures.'®'" For the sake of simplicity, we have chosen the
control parameters such that each numerical simulation
brings to the fore only one single mechanism. However,
the results are quite generic and would persist for a wide
range of parameters.

Figure 5 (part 1) illustrates the role of the z44 0B/dx
coefficient, and is related to the experimental Fig. 1. All
the coupling terms have been taken equal to zero, except
the real part of z4 [Re(z4) <0]l. The effective group ve-
locity is homogeneously positive. Therefore, near the left
boundary, every small perturbation around B(x=0,¢)
=0 simultaneously grows and moves to the right of the
box. In the absolute instability case, the growth rate is
more important than the group velocity and the oscilla-
tion takes place near the left boundary. In the opposite
case, we are dealing with a convective instability and the
amplitude of the oscillation, almost zero in the neighbor-
hood of the left boundary, reaches a significant nonzero
value only at a certain distance from the boundary.
Note that for this mechanism which does not depend on
the presence of defects, the role played by the lateral
walls is crucial since without any rigid boundary condi-
tion, B would never have reached a constant zero value.

For the simulation of Fig. 5 (part 2), we have used ex-
actly the same parameter values as before but the initial
field A has been chosen in order to display two topologi-
cal parity defects of opposite sign. Now the effective
group velocity is positive near the left and right boun-
daries, but negative between the two defects. Therefore,
in a convective unstable regime, every small growing per-
turbation moves to the left until it reaches the negative-
group-velocity region and then stops. This mechanism
explains why a type-II defect close to a boundary may
separate stationary and oscillating regions.

The numerical results of Figs. 5 (parts 3 and 4) illus-
trate the role played by the asymmetric renormalization
of the oscillation eigenvalue and are related to the two
experimental cases shown in Figs. 2 and 3. All the cou-
pling coefficients have been taken equal to zero except
the real part of z;3 which was chosen strictly negative.
In the first case, the B eigenvalue [Re(z;,)] is weakly
negative in order to remove all oscillations when coupling
terms are not present. At the defect-II core, the parity
gradient is negative and therefore z,38.A4/9x is a positive
renormalization of the growth rate. For the second case,
Re(z;) > 0, but at the core of a type-I defect, the parity
gradient sufficiently decreases the effective eigenvalue to
locally stop the oscillation.

In conclusion, the simple theoretical model we have
developed is in quite good qualitative agreement with the
experimental data. Based on symmetry considerations,
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FIG. 5. Numerical simulation of Eq. (3) with y=a=g=1, §=v=0, and z,=—1+0.7i, z3=1+0.3/, z;=0. The noise ampli-
tude is 10 7%, (a) The evolution of the positions of the hot fluid current vs x and ¢. (b) A (solid line) and | B| (dashed line) vs x. (1)
zn=1,z4=—6,and z,3=0. (2) z;1=1, z4=—6, and z,3=0. The only difference from (1) is the presence of topological parity de-
fects of types I and II. (3) z;;,=—0.1,z4=2,and z;3=—2. (4) z;;=1.1,z4=—2.1,and z;3=—3.

the results are quite generic and should have to apply to
all secondary oscillatory instabilities of a closed system
which has already broken the parity symmetry. They
also shed new light on the distinction between open and
closed systems.

We acknowledge the INRIA Sophia-Antipolis where
the numerical simulations presented in this paper have
been performed, DRET (Contract No. 88CO145)
(Direction des Recherches Etudes et Techniques) for
financial support, and the European Economic Commun-
ity for the contract entitled “Spatio-Temporal Chaos in
Extended System.” Institut du Non Linéaire de Nice is
UMR CNRS No. 129.

IThe convection cell is rectangular, with a depth d of 9 mm
and horizontal aspect ratios respectively equal to 0.28 and 20.
The distance between two bumps on the same plate is 0.42A.
with A, =2d, which leads to 48 convective rolls. The upper and
lower arrays of bumps are shifted one from the other and are
made of the same material as the plates.
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