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Some peculiarities of the energy diagram of Rydberg atoms in parallel electric and magnetic fields are
interpreted by making use of a supersymmetric approach to these systems. The expression of the super-
charge operator is given as a function of the generators of the SO(4) symmetry group. Some applica-
tions to analytical determinations of the spectrum and eigenfunctions are discussed and agree with previ-

ous experimental observations.

PACS numbers: 31.50.+w, 31.10.+z, 32.60.+i

The purpose of the present paper is to present evidence
for an unexpected supersymmetric behavior in Rydberg
atoms experiencing parallel magnetic and electric fields,
in the limit where both the diamagnetic interaction and
the linear Stark effect are small perturbations to the
Coulomb field. Manifestations of such a property have
been recently experimentally and numerically recorded
in the lithium and hydrogen spectra, although the origin
and consequences were elusive. 2

Symmetry considerations have played an key role in
the past years for understanding the physics of perturbed
Rydberg systems in external fields, in particular, their di-
amagnetic and crossed-field behaviors.> They also led to
the design of an efficient scheme for building atomic cir-
cular states®> and to the definition of elliptic atomic
states with appropriate semiclassical behavior.® Al-
though the present investigations are based on the same
concept, the one of symmetry group, our goal here is not
to establish what the symmetries of a given system are,
but rather to establish how they relate to the ones of
seemingly different Hamiltonian systems. Bridging be-
tween the dynamical properties of two such different sys-
tems is the main concern of supersymmetry. More pre-
cisely, they share the same spectrum and their eigen-
states are interrelated. Our purpose here is to use this
supersymmetry formalism in its general sense and not in
its high-energy context for bosons and fermions.

The Hamiltonian of a Rydberg atom in parallel elec-
tric and magnetic fields (along the z axis) is (in atomic
units)

2 2
H=2 L1, B, B 4y 4rz,
2 ro 2 8
where B and F are measured respectively in units of
B.=2.35x10° T and F.=5.14x10° V/cm. At low
fields, when Bn? and En*<1, the energy levels are given
by the restriction of H to a given n shell, which can be
conveniently expressed as a function of the generators
(L,A) of the SO(4) symmetry group [L is the angular
momentum, and A =n{(pxL —Lxp)/2—r/r} the scaled

Lenz vector; L2+A%+1=n2]:
1 B B’n?

Hn=—?+~2—[,z+ W(a),
where W (a) stands for?
W(a)=n2+3+L2+442—542—2/5a4, , 1)

with a=12F/~/5nB? (a dimensionless parameter).” An
alternate form of W(a) can be obtained by making use
of the SO(3) ®SO(3) description of SO(4), introducing
the 3D angular momenta j;,=% (L ¥+ A) such that
ji=j2=@m—1)/2.% L,=j,.+j:. commutes with the
effective Hamiltonian W which thus mixes n—|M|
(L,=M) states among the n? degenerate ones of the
shell. Being unessential, the paramagnetic term BL,/2 is
dropped in the following. Even in this low-field limit, the
problem cannot be solved analytically.

Equation (1) can be cast under a supersymmetric
form (or factorized) by introducing the supercharge
operator Q:°

Q=cL-+dA-, (2)
where =+ refers to the standard components of the vec-
torial operators. It fulfills the commutation relations

[LZ’Q]=—Q, [Lz,Q*] =Qf, (3)

which means that Q and Q' are lowering and raising
operators, respectively, for L., although they do not coin-
cide with the ladder operators L + of the angular mo-
mentum L (see below).

By considering the supersymmetric partners QQ " and
Q"0 and identifying with W, one obtains the solution
c¢=1, d =+/5, leading to®

w)=Q'0+2(L,— 1)L, —2)+2V54.(L,—1—a),
(4a)

W(a)=00 " +2(L,+1)(L.+2)+2V/54. (L, +1—a) .
(4b)
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The operators W, QQ T, and Q*Q commute with L,. W
and Q'Q commute with each other when choosing
a=L,—1. They have then the same spectrum to within
a constant.

Equation (4) indicates that, although the system is not
supersymmetric, two different parallel-field situations
can be associated with, respectively, 00" and Q%Q.
These factorizations actually suggest that the action of
the supercharge results in some connections between the
angular momentum L, =M values and specific values of
the field F in the parallel-field energy diagram. This can
be established from the following operatorial identity:

W(a)Q 7= Q" IW(a+p)—4p>—8pL.]

+2/5p0 VPN, —a), (5)
where
Pt=14,,0"1=4a++5L+, [Q%,P1=0. (6)

After projecting on a given L, =M subspace, Eq. (5)
simplifies if one chooses field values such that a=M.
The substitution k =M +p restores the quite symmetri-
cal role played by M and k. In particular, k is an integer
such that 0 =< M < k < n — 1. Finally, one obtains

Wk(a=M)Q1'(k—M)
=Qtk=M{wMg=k)+amM*—4k3. ()

Although this equation is not exactly of the supersym-
metric style, the interpretation is similar. Let us intro-
duce the spectrum f{eM(k)} and eigenfunctions
{lwM(k))} of the Hamiltonian in parallel fields for
L, =M and the field value @ =k. Then Eq. (7) implies
that Q" k~M|wM(k)) is either (i) an eigenfunction of
the same Hamiltonian for L, =k and a different electric
field value @ =M, for the same energy (to within a con-
stant term), that is,

la=M)=eM(a=k)+4(M?*—k?);

or (i) QTk=M|¥M(q=k))=0, which defines the states
of WM(a=k) having no supersymmetric partner in
W*(a=M). There are k — M such states (which is the
difference of the dimensions of W* and W) which build
a “ground-state ensemble” for the operation Q tk=m),

Equation (7) thus implies that the parallel-field energy
diagram and wave functions have subtle interconnec-
tions, allowing one to deduce the spectrum and eigen-
functions by knowing only one of the supersymmetric
conjugate situations (L, =M, a=k) or (L, =k, a=M).
They are linked by the Q "* =* operator which raises L.
by k — M units and lowers a by the same amount. These
“quantized” electric-field values and the angular
momentum thus play the astounding role of conjugate
variables as shown in Fig. 1.

Some consequences of Eq. (7) are even more striking,
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FIG. 1. Plot for n =11 of the reduced electric-field (Ref. 7)
values @ =k vs the angular momentum L. =AM for supersym-
metric situations of the parallel-electric-and-magnetic-field en-
ergy diagram. This occurs only for integer values of a such
that 0=<k=<n—1. Two conjugate situations (k,M) and
(M, k) are shown (solid circles) for which the spectra are iden-
tical (to within a constant) and the wave functions are related
by the Q7* =M operator which raises L. by k — M units and
lowers a by the same amount.

which can be demonstrated by considering the situation
where M =0. Hence,

Wk(a=0)Q " =Q* W% a=k)—4k?1, (®)

which means that the parallel-field Hamiltonian for
a=k and M =0 is the supersymmetric partner of “atom-
ic diamagnetism” (for zero electric field) for L, =k. The
latter situation is well known'®"!3 and the spectrum
displays a rovibrational organization with, at top, rota-
tional states with almost perfect A rotational symmetry
and, at bottom, vibrational states with parabolic-type
symmetry. These states (which only exist if |M|
<n/v/5) are almost degenerate in parity due to an
exponentially-small-with-n tunneling through a barrier
at the bottom of the band.'® When adding a small elec-
tric field, this will result in quasilinear behavior of the
energies of these quasidegenerate states as shown in Fig.
2, with small anticrossings at successive field values.

As remarked in Ref. 1, the amazing thing is that all
the anticrossings take place, at the same successive field
values, although the parameters of the states involved
(electric dipole, zero-field level spacing, polarizabilities)
do vary from one to another. The origin of this remark-
able phenomenon lies in the parallel-field Hamiltonian
being associated with a supersymmetric partner, namely,
atomic diamagnetism. From the exponentially small
parity degeneracy of the latter for M =k, the former
should present the same character for M =0 at a
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FIG. 2. (a) Energy diagram W/n? in parallel fields for n =100 and L, =0 vs the reduced electric field a (Ref. 7). (b) Magnified
view of anticrossing region. For the successive integer field values a =1, ... ,k,... n—1, which are (exponentially) close to the an-
ticrossing points when they exist, the spectrum is exactly the same as the one for atomic diamagnetism (to within a 4k 2 shift) for the
angular momentum M =1,...,k,...n—1, for the n—k upper levels [shown as solid circles in (b) for e =k =6]. The eigenfunc-
tions are interconnected through the Q™ operator. The k lowest levels [shown as rhombs in (b)] at the kth anticrossing act as a k-
dimensional ground state with no supersymmetric pairing. Part of their properties can be deduced analytically.

specified a =k field value, with exactly the same (ex-
ponentially small) spacings. This implies that all the
anticrossings take place “‘simultaneously” at the same
field value a=k, but to within exponentially small
corrections.

Beyond these anticrossing aspects, the property is
more generally valid for the rotational states and still
holds true when |M| > n/\/5. In Fig. 2, for M =0 the
parallel-field spectrum at the kth “anticrossing” is exact-
ly the same as the one for the diamagnetic interaction
for L, =k (to within a constant shift) for the n — k upper
levels of the spectrum.

Finally this also leads to a relationship between the
structure of the wave functions of the partner Hamiltoni-
ans,

|[wk(a=M))=Q T« "M |gM(g=k)), )

which for M =0 implies that the whole set of eigenfunc-
tions of atomic diamagnetism (whatever the L,=k
value) is deduced by knowing the eigenfunctions in
parallel fields for M =0 on a set of n integer values of
the electric field. The levels at the bottom of the spec-
trum, which no longer experience an anticrossing, or
more generally have no supersymmetric partner (see Fig.
2), have an eigenfunction which fulfulls

QTk=M|gM(g=k))=0. (10)

A limited exploration of the structure of these eigenfunc-
tions can be done after rewriting the supercharge in a
more convenient form (making use of, e.g., the Baker-

Hausdorff formula):
Q=2¢ *:gq_" an

where y=In[(1++/5)/2] is the logarithm of the golden
ratio. The Q and Q7 operators are thus related to the
standard components (A +,A-) of the A(4,,A4,,L,) angu-
lar momentum '# operator through a nonunitary transfor-
mation. It follows from Eq. (10) that the e **|w¥)
states are those which are annihilated by k — M applica-
tions of the raising operator A+ =4+ =A,+iA, of the A
rotational basis.'* Hence, the subspace of the k —M
eigensolutions |¥*(a=k)) is spanned by the nonortho-
normal vectors e |n A\, =M) with M<A<k—1
=< n—1, which can be expanded on the parabolic basis®
using appendix 1 of Ref. 14.

For M =0 and k=1 (the lowest level at the first an-
ticrossing in Fig. 2), the (unnormalized) solution is over-
simple in the parabolic basis:

. 2m
m=j
[¥C(a=1= X [~1+2—\/§] ljjm—m),
m==j

where the coefficients are powers of the golden ratio.
Further use of Eq. (8) gives the energy W°(a=1)=4.
More generally, if the dimension of the ground-state en-
semble is 1 [hence (k—M)=1], its eigenfunction is
[wM(a=M+1))=e**|n, L =M, =M) and the energy
WMa=M+1)=40QM+1).

To sum up, we have shown that the structure of Ryd-
berg atoms in parallel electric and magnetic fields fol-
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lows a somewhat unexpected rule very similar to super-
symmetry. This allows the intertwining of the spectrum
and eigenfunctions for situations in which the angular
momentum L, and the reduced electric field a are such
that (L,=M, a=k) and (L, =k, a=M). Such a rule
manifests itself in the characters of the experimental
spectrum recorded on hydrogen and lithium and in nu-
merical simulations."? Tt is also the origin of the early
finding that the semiclassical integrals in the parallel-
field problem are exactly the ones arising in the semiclas-
sical theory of atomic diamagnetism."'> Although the
nature and implications of this property are still elusive,
it raises new questions in the seemingly well understood
situation of atomic diamagnetism at low field. For a
given n, this problem is separable in momentum space, in
the elliptic-cylindrical coordinates of R(4):'%'¢ How
does this translate in the supersymmetric-conjugate
parallel-field situation and is there any implications for
the strong-field nonintegrability and chaotic behaviors in
these systems?
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