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Constructing the Three-Dimensional Gross-Neveu Model with a
Large Number of Flavor Components
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We construct the ultraviolet limit of the massive Gross-Neveu model in three dimensions and with a
large number of flavor components N.

L = itt(x) (i(8+m) itt'(x)

+&[:y(x) it (x):1'/2N,

where X,m, gE IR+ are respectively the coupling con-
stant, the fermion mass, and field strength, and the y
matrices are either 2x 2 or 4x 4.

For d & 2, perturbative nonrenormalizability is seen in
the negative mass dimension of k. It turns out, however,

Cp(p) = +M M+. .
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Traditional treatments of quantum field theory have
laid stress on the concept of perturbative renormalizabili-
ty. However, recent progress' on renormalization theory
helped to change our view of holding this criterion as
fundamental for a local model to exist. On the one hand,
a theory may present a good renormalized perturbation
series and fail to exist under physically acceptable condi-
tions. For instance, this is believed to happen with the
v!4 model. On the other hand, a theory may be pertur-
batively nonrenormalizable and make sense, as for the
planar p4 model with modified propagator p
(e&0) and negative coupling constant, and the two-
dimensional Gross-Neveu model with propagator p'/

p '. ' Unfortunately, these two theories possibly violate
Osterwalder and Schrader (OS) axioms.

Using these new ideas, as the first "genuine" perturba-
tively nonrenormalizable model, in this Letter we outline
the main steps for controlling the UV limit of the mas-
sive Gross-Neveu model in Euclidean dimension d=3
and with large N. A detailed version of this work is in

preparation. Until the present time, we cannot say any-
thing about the OS axioms. As for Refs. 3 and 4,
refiection positivity should be the most delicate point to
prove, but we have no reason to believe it should fail.

The model is formally defined by the Lagrangian

that if we sum all chains with the bubble graph

(2)

p-)C Q = —X'~(p)/N
in the bare series, before any renormalization, we obtain
a just-renormalizable series in the parameter 1/N. This
strong property reAects on the structure of the renormal-
ization group (RG) for the model, allowing us to verify
the existence of a nontrivial and stable UV fixed point.

To analyze the UV limit, instead of renormalizability
in X, the proper question is whether or not one can find
functions m~ =m (p, A,„„,m„„,g„„N), etc. , of an UV
cutoff p, N, and positive and finite (renormalized) pa-
rameters, such that the 2p-point Schwinger functions
S2~(k~, m~, g~, p, N) exist when p ~, describing a non-
trivial theory. Moreover, in all non-super-renormaliz-
able examples we know, we satisfy these conditions only
when we can relate the theory to a stable fixed point, and
the construction of the Schwinger functions using
methods like cluster expansions may be envisaged for the
weakly coupled case. As we show, this is exactly the
case for this model. The fixed point is given by 1/N
times P*(N) & 0 satisfying P*(N) P* as N ~. It
fixes a small (perturbation) parameter if N is large.
With these ideas, for A being a compact box in IR, we
prove the following theorem.

Theorem. —One can exhibit a family of parameters
m~, g~, and kp such that, for N sufficiently large, the nor-
malized Schwinger functions S2~(k~, m~, g~, p, A, N) exist
when the volume ~A~ and p

The renormalization structure of the model Let us.—
drop here the volume dependence and consider first the
leading order in 1/N. To this approximation, the only
connected functions are the free-fermion propagator and
the chains of bubbles. UV divergences appear only in

the four-point functions. Let C~(p) be defined by

&p/N

I+~,~,(p)
'

where, for S~(p) =(gp'+m) 'rt~(p) being the fermion propagator with UV cutoff g~(p) =0(1 —~p~/M~) and M E M+—]if, we have

( )= tr, ;„S(k+p)S(k)=O(1) I
d k ~k ~ ™11 ( )"'( +

(3)(2~)' ' ' ' " lg'(k+ )'+m't( 'k'+m')
Let us consider the ansatz X~

' =k„,„' —tv~(0), m~=m„„, and g~=g„„. The two last conditions recall the finiteness of
S~ at this level. To analyze the four-point functions, we first remark that tv~(p =0) = —b(P~)M g~, with
P~=p~M ~=m~g~ M ~, and b(p) & 0, if p is taken large With this, si. nce tv'" (p) =tv~(p) —tv~(0) tt""(p) when
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That tr"'"(p) is positive may be checked from Itr~(p)I
~ —tr~(0), assuring that C (p) is well defined. Also,

z""(p) =(p*) 'IpI+const+o(1/IpI), Ip I »1,

P~ OO whole and its perturbation series in X~ exist at this order
in 1/N.

c,(p)- c (p) =[[~ +~-"(p)]N] -'.
The above ansatz arises as a solution of the RG equa-

tions. To see this, we take a formalism where the
momentum space is chopped. We decompose the cutofI

g, into partitions g'(p) =rt;(p) —tl; ~(p), with g ~(p)—:0, and slice the fermion propagator S~(p)
=g~=~ S'(p). Note that S'(p) =S~(p) q'(p) has support

shows the existence of a nontrivial UV fixed point on M' ' & p M'. Next, we decompose z~(p) as a sum
p*/N =lim pC (p). We can also show that the of z'(p) =z;(p) —tr( —i(p) (=»f Ipl & M').
bubble summation is convergent since Ik~trp(p) I

In this formalism, the idea of summing bubbles is to
~ Ik~tr~(0)I & l. In other words, both the model as a start from k~ and, after summing tr~(p), define X~

+ &~, etc. , until we get Xo =X„,„. That is,

(x,/N) [I+a,[~~(0)+ +~'" (0)]]
+i +i 4I+X [tr~,„(p)+ +tr', ,+„'(p)+z;(p)][1+X [tr~(0)+ . +r'+'(0)]]

Renormalization and resummation of bubbles fix the
evolution of the renormalization Bow for k~, the only
nontrivial one at this approximation. From (4), we see
that the eftective coupling at slice i satisfies

+ [~~(0)+ . +~'+'(0) l. (5)
As before, for large i, one can check that

x'+'(0) = —bP(; )M'+'g, ,„(1—M ') & 0,
with P;+ ~ =p„„M '+', p„„=m„„/g„„.It follows that
tr&e, (p) =tr'(p) —tr'(0) ~ 0. Also, as for X~, if we sup-
pose that k;+& = [g„,/b(P;+~)]M '+' asymptotically
in i, then (5) leads to k; = g„,„M '/bP(. ;), which shows
the ansatz is stable up to negligible corrections.

Let p; stand for the ratio k;M'/g„, „. The fixed-point
condition is also seen in the fact that P; has a positive
limit when i ~ ~. In terms of this variable, (5) reads

P, /M

1 P;b(P, ; )(I —I/M—)

!
and has a fixed point P=P*. The stability of this non-
trivial solution is a consequence of f'(p*) =M & 1, and
k~(A, „„)emerging from (5) gives the above ansatz.

Let us recover all orders in 1/N. The nonrenormaliza-
bility in X~ is surmounted when considering the expan-
sion in C~(p). Taking the wavy line in (2) as a "true"
propagator, the only divergent contributions come from
the two-fermion, the two-wavy-line, and the three-point
(with two fermions and one wavy line) functions, which
give corrections in y(x)y(x) and [:y(x)y(x):] . For-
tunately, the apparently divergent three-wavy-line func-
tions are convergent avoiding a disallowed renormaliza-
tion in [:y(x)y(x):1 . With this, all parameters depend
on N [m~ m~(N), etc.l and we require them to recover
the above solution when N ~. For positive g; and v;,
set k;=g; v;

' and ask g;(N ~) =1 =g„„(N=~).
Let p;(N) denote g;(N) M'/v;(N)g;(N) . At the first
order in 1/N, for the slice p, corrections come from

Sm, 8$ BK Bg

For example, direct calculation yields 8m~= N 'P~a m~, where a is approximated by a constant for p large. We
have similar results for the other corrections and 8v~ is given by gptr~(0)+Sic~. Let a ', a, and a be the
coefficients appearing in Sg~, B(~, and SK~, respectively. Corrections to p describe a renormalization fiow resulting in
the following fixed-point equation:

P a /N —P[(1 —1/M)b —2(a —a ' )/N]+(1 —1/M) =0. (7)

This has one solution P*(N) converging to P* for N ~. The derivative of the corresponding mapping is larger than
1 at p*(N). This guarantees the stability of the solution for the full theory.

About the proof. —We write the normalized 2p-point Schwinger functions with cutoffs as

Sq~ ~ A(E) =Z~ A' dpi', (o~) Tr[h~([1+%'~ A] ')AP (E)]det3(1+%p p), (8)

where Z~ A is the partition function, a~ is a boson field, and dye, (o~) is a Gaussian measure with covariance C~ given
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by a cutoff version of (2) with A,p
' replaced by vp and

supported on A. R~ ~ is a trace class operator on
//=X (d p, R) SC '" SC given by

Rp, (x,y) = (gp/J% )A(x)S,(x,y) op(y)A(y) . (9)

Sp(x,y) is the Fourier transform of Sp(p), A(x) is the
characteristic function of A, and det„(I+6) means
det(1+8)exp[ —Tr[ +(—I)"+'6"/n]]. Finally,
Xp (E) is a projector on A p'// which includes the set E
of external legs.

That (8) describes the Schwinger functions of this
model is given by the following steps. First, we introduce
an ultralocal field o by splitting the four-fermion ver-
tex. The interaction A, [:yr(x)y(x):] /2N is replaced by
4&/Na(x):y(x)y(x):. Then, we scale cr to absorb the
part v of X in its covariance and integrate the fermions
out. This yields a Matthews-Salam formula with in-
teraction det2(1+%). TrA' is the bubble contribution,
and is absorbed in the boson covariance.

The proof of the theorem is based on multislice cluster
expansions. As for Sp Cp is sliced, o' being measured
by dpi', (cx'). Using lattice coverings for A, with spacing
aM ' (a ) 1), we perform horizontal expansions for the
unnormalized and the partition functions. This is done

by interpolating S' and C' and testing couplings between
cells of one same covering. With vertical expansions, we
test couplings between a cell of the slice i and a cell of
the slice j &i. Inductively, Mayer expansions factorize
the vacuum graphs for each slice.

We list the main di%culties and their solutions. The
major problem is the control of the large fields. It ap-
pears in two ways: (i) domination of the badly localized
fields; (ii) measurability of the interaction in (8) by
dpi', (,).

Inspired by Ref. 8, (i) is solved with an effective-
potential technique. Badly localized fields are fields aj
produced by expansions of slices i & j. To afford their
domination, for i E I=[j/ ai N'i

m~g~ 'M '&O(1)],
6 a cube of slice i, and d(x) its characteristic function,
we consider the operator Kp ~ on //,

Kp, (x,y) =(g;/JN )a(x)Sp(x —y)cV ', |A(y), (10)

with m;, g;, and g; being parameters corrected up to the
slice i and q a positive integer. Sp is the fermion propa-
gator with periodic conditions in A and c7;-'~ —

1 denotes
a; —~-1 =g':~l 'a~ averaged in h, . Since Spc7;-'~ —

i is a
multiplication operator in momentum space, det3(1
+Kp~) may be evaluated. If 0& a & 50, 0.5 & y& 1,
and for r = (g;/(; JW )o;-'~ -1, we get

r

exp[0(1)a (m;/(;) M 'Nl =O(1), (r ~

(am;/g;,

Idet3(I+ Kp, ) (
(O(1) && ' exp[ —O(1)a M '( r [ Nl, am;/g; &

I
r I

& (1 —y)M',

exp[ —O(I)a'M-"[r['N], [r[) (I —y)M'.

We use this to dominate [apply cr"exp( —o ")(const"
x (n/2k)t] badly localized fields. The reason why Kp & is
a good approximation for %'~~ in the same support is
seen as follows. First, S' —Sp is small if the constant a
is large. Second, lSOI —

q
—] O'I —

q
—] cd —

q
—] is small

because o. has been averaged in a cube smaller than the
natural one. This effect is weakened for large a. Thus,
we introduced the shift q and we set M~))a. The not
very badly localized fields cr' ', . . . , o' ~, produced at
slice i, are integrated at a price of accumulation factors
const ~i (see below).

Roughly speaking, the bound (11) is enough because
we essentially have to control Tr(%'pA) which appears
from perturbation of det3. A bound per dominated
a field arising from (11) is O(1)((;/g;)a i M'N'
Tr(%'p A) gives a triangle graph with bare fermions run-

ning along the sides and three external bosons. Its lead-
ing part is diagonal in the slice indices and cube localiza-
tions because of renormalization and distance falloff of
the propagators. For the slice i, it behaves as O(1)
&&a (g;cr/g;) m;M 'N ' . Integration of a field cr~,

produced in slice i, gives (M i /v)i )xM ' J i. (The
second term is the accumulation factor giving the square
root of the number of cubes of slice i contained in a cube
of slice j, and the first term is the usual power counting

coming from the propagator C~.) The field Sa;—q-~
behaves as a well localized field o'. Altogether, in the
leading case with three badly localized fields, we can
keep a factor O(1)a N 'i' if we integrate one field
and dominate the other two. And we set 1 « a
« Mq «N ' ', which makes this factor small. The
same inequalities ensure small factors for the other
cases.

Now we consider the measurability of the interaction.
The difticulty in showing that we can integrate the in-
teraction in (8) comes from bounding

~
ln [det3 (1

+Ap, A )1 ~. The usual bound Tr (ReÃp A ) gives (ap,
Amp""Aop)/2, which is also in dpc . However, both
come with different cluster interpolations and can hardly
be compared.

To solve this, with a large-field expansion, we define
"unpainted" cubes, where the covariance C gives a small
factor, and "painted" cubes for which it behaves as in
(4). We use this distinction to construct expansion cells
under the following rule: We do not expand horizontal
or vertical couplings between too closely painted cubes.
In this way, we get a correspondence between expansion
cells and regions in phase space where we can have lead-
ing bubbles. By construction, these are not greatly
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aAected by interpolations, and integrability of the
"noninterpolated" traces follows by inspection.

This recipe works provided we can associate small fac-
tors to the elementary cubes. So, this expansion is ap-
plied to the covariances C'. For each slice, this precedes
any other expansion. It is local, in contrast to the ones
linking different cells. However, the way it gives conver-
gent factors is also by vertex productions.

If we complete the above procedure by adopting en-
tirely inductive cluster expansions (horizontal expansions
following the Brydges-Battle-Federbush scheme, and
vertical expansions using the tree polymers resulting
from the former), we can exploit the positivity of the re-
normalized bubbles as operators to prove

Tr (%'p, +4'p, ) '(h, v )

~ Tr(%'~ A+ R~ &) + (boundary or small terms),

where h and v indicate the horizontal and vertical pa-
rameters, absent in the right-hand side. Similar results
hold for the boson covariances. Integrability of the in-
teraction follows from TrCz„„~const per cube and
I ICtr„, I I & 1, since C =v+tr„,„. This is applied to

Idet '(1 —Ctr„) I
~ expH1 —

I I «,-I I) ' T«tr -& .

Combining this with the small factors previously ob-
tained, we can prove convergence of the whole expan-
sion, uniformly in p and A.

To conclude, let us underline the main property of our
construction. In renormalizable and asymptotically free
models, asymptotic freedom leads to an expansion in the
neighborhood of a free Beld. For the UV problems, this
provides a standard guideline through the perturbative
expansion of the Callan-Symanzik P function. Here, the
renormalizable behavior is obtained by an expansion
around a solvable but not free theory. What measures
the shift from this solvable theory is not a renormalized
coupling constant, as in asymptotically free models, but
1 jiV. Thus, convergence holds only for large iV, and the
inductive determination of the ansatz is not related to

the first perturbative orders of P.
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