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Estimating the Lyapunov-Exponent Spectrum from Short Time Series of Low Precision
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We propose a new method to compute Lyapunov exponents from limited experimental data. The
method is tested on a variety of known model systems, and it is found that the algorithm can be used to
obtain a reasonable Lyapunov-exponent spectrum from only 5000 data points with a precision of 10 or
10 in three- or four-dimensional phase space, or 10000 data points in five-dimensional phase space.
We also apply our algorithm to the daily-averaged data of surface temperature observed at two locations
in the United States to quantitatively evaluate atmospheric predictability.

PACS numbers: 05.45.+b, 02.60.+y, 47.20.Tg, 92.60.Wc

Nonlinear phenomena occur in nature in a wide range
of apparently different contexts, yet they often display
common features, or can be understood using similar
concepts. Deterministic chaos and fractal structure in

dissipative dynamical systems are among the most im-

portant nonlinear paradigms. The spectrum of Lyapu-
nov exponents provides a quantitative measure of the
sensitivity to initial conditions (i.e. , the divergence of
neighboring trajectories exponentially in time) and is the
most useful dynamical diagnostic for chaotic systems.
In fact, any system containing at least one positive
Lyapunov exponent is defined to be chaotic, with the
magnitude of the exponent determining the time scale
for predictability. In any well-behaved dissipative dy-
namical system, one of the Lyapunov exponents must be
strictly negative. ' If the Lyapunov-exponent spectrum
can be determined, the Kolmogorov entropy can be
computed by summing all of the positive exponents, and
the fractal dimension may be estimated using the
Kaplan- Yorke conjecture.

The Lyapunov-exponent spectrum can be computed
relatively easily for known model systems. However, it
is di%cult to estimate Lyapunov exponents from experi-
mental data for a complex system (e.g., the atmosphere).
Wolf et al. proposed a method to estimate one or two
positive exponents. Sano and Sawada and Eckmann et
al. developed similar procedures to determine several of
the Lyapunov exponents (including positive, zero, and
even negative values). This is now a very active research
area, and several authors have introduced further im-

provements. However, all of these methods require rela-

tively long time series and/or data of high precision (for
example, Eckmann et al. used 64000 data points with a
precision of 10 for the Lorenz equations ), but such
high-quality data cannot be obtained in many real-world
situations.

The infinitesimal length scales used to define Lyapu-
nov exponents are inaccessible in experimental data.
The presence of noise or limited precision leads to a
length scale L„below which the structure of the underly-
ing strange attractor is obscured. Also, for a finite data
set of N points, there is a minimum length scale
LO=L/N't, where L is the horizontal extent of the at-
tractor and D is its information dimension, ' below
which structure cannot be resolved. When Lo~ L„,in-

creasing N is not likely to provide any further informa-
tion on the structure of the attractor, so that a relatively
small data set can be sufhcient for computing Lyapunov
exponents. Furthermore, if the length scales Lo and L„
are small enough for the chaotic dynamics to be the
same as at infinitesimal length scales, then the computa-
tion of Lyapunov exponents using these length scales
should yield reasonable results.

Abraham et al. '' have demonstrated that it is possible
to calculate the dimensions of attractors from small,
noisy data sets. The purpose of this paper is to develop a
procedure by which one can evaluate the Lyapunov-
exponent spectrum from relatively small data sets of low
precision. We test the method on a variety of known
model systems, and we also use the method to study the
predictability of the atmosphere from observational
meteorological data. It should be noted, as pointed out
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by Ruelle, ' that the Grassberger-Procaccia algorithm'
cannot be used for small data sets, but that no such re-
strictions apply to Lyapunov exponents and the Kaplan-
Yorke dimension.

Given a time series x; =x(iht) (i =1,2, . . . , N),
where N is the number of observations and At is the time
interval between measurements, the attractor can be
reconstructed in a k-dimensional phase space' by form-

ing the vectors

xi = (xi & xi +m»~ ~ ~ xi + (k —( )m )
where ~ =mAt is the time delay, with the integer m

chosen appropriately. Different methods have been sug-

gested to obtain r (see Zeng, Pielke, and Eykholt' for
detailed discussions). In this paper, r is chosen as the

lag time at which the autocorrelation function of the
time series falls to e ' =0.37.

For each point x;, consider the shell between two

spheres centered at x; of radii r;„&r, and consider the
set of trajectory points x~ within this ith shell:

-
&/z

x& x; = xi+I x +I
I=o

The use of a shell, rather than a ball, is to minimize the
eff'ects of noise or measurement error, since these eff'ects

are greatest when
~ ~xl

—x(~ ~
is small. After a time nest,

the small vectors x~
—x; evolve to the small vectors

x~+„—x;+„.If these vectors are so small that they can
be regarded as good approximations to tangent vectors in

the tangent space of the dynamical system, a kxk ma-

trix T; describing the evolution can be obtained from the
equations

x(+» x(+„=T; (x( xi) . (1)

The elements of the matrix T; are found using a
least-squares-error algorithm. In the special case n=m
(i.e. , nest =mht =r), the matrix T; consists of 1's just
above the diagonal and 0's elsewhere, except for the last
row of elements. Our computations have shown that re-
sults using n =m are usually as good as, or even better
than, those for n (m, and computations with n =m are
much less time consuming, so we use n =m in our calcu-
lations below.

When the number n; of points in the ith shell is not
less than the embedding dimension k, the algorithm
succeeds most of the time. However, to be conservative
and reduce statistical errors, we use only those shells for
which n; is much larger than k (in the computations
below, n; is taken to be 10). We first take r to be 5% of
the horizontal extent L of the attractor, since Eq. (1) re-
quires xj —x; to be small. In experimental data, this
generally makes n; sufficiently large, and the noise length
scale is generally less than r. In the case that some n; is
too small, we double r to 0.1L for that shell and find the
trajectory points x~ within this new shell, although this is
seldom necessary. If n; is still too small, we drop this
point x; and proceed to the next point x;+„.We taker;„to be the length scale of the noise, which, in our ex-
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amples, is 0.01L. The matrix T; is successively reorthog-
onalized by means of a standard Q;R; decomposition. '

Then the Lyapunov exponents are given by

1
K —

1

1(= g In(R))((, /=1, 2, . . . , k,
mAtE g=o

where K ( [N —(k —1)m —1]/n is the available number
of matrices T;.

The x components of numerical data for various
known model systems are treated as experimental data to
test our algorithm. These systems are the Lorenz equa-
tions and the Rossler equations, ' which are finite-
dimensional systems, and the Mackey-Glass equations, '

which constitute an infinite-dimensional system. The
first two systems are solved by the Runge-Kutta method,
and the last system is solved by a very efficient algorithm
of second-order precision. ' We use a time step At
=0.01 for the Lorenz equations and At =0.1 for the
Rossler equations. A time step of 0.01T, where the pa-
rameter T is given in Table I, is used to integrate the
Mackey-Glass equations. However, we then include only
every fifth value in our data set, producing a time series
with At =0.05T, so that the delay time r is not too large
compared with ht (usually, r =10ht is desired ).

The first 10000 data are discarded from the generated
time series to eliminate transients, and the number N of
observations is taken to be 5000, except for the Mackey-
Glass equations with T=30, for which a five-dimen-
sional phase space is used, and we take N =10000. For
the Lorenz and Rossler equations, all values are rounded
off' to the first decimal, producing a precision of 10
and for the Mackey-Glass equations, all values are
rounded off to a precision of 10 (this is because the
horizontal extent of the attractor is much smaller in this
case). We take K =min(2000, [N —(k —1)m —1]/m)
to guarantee saturated Lyapunov exponents, although
convergence of k; is actually reached with fewer matrices
(Fig. 1 shows the convergence of k; for the Mackey-
Glass equations). The autocorrelation function is also il-
lustrated in Fig. 1, and it is seen that the delay time r
(i.e., the e-folding time of the autocorrelation curve) is
about 9At.

Table I shows the computed Lyapunov-exponent spec-
trum for the various model systems described above.
The error bars are computed from a few runs with
changes in the parameters i, r;„,and r. It is seen that
all error bars are relatively small, which shows that the
result from our algorithm are insensitive to the choice of
these parameters. For the Lorenz equations, the com-
puted value of the largest positive Lyapunov exponent X[
diff'ers from the accepted value by less than 9%. Since
the value obtained for k2 is only about 3% of X], its rela-
tive error is very large. However, one exponent must be
zero, and this exponent is easily identified as k2, so that
the relative error for Xq has little meaning. For the
Rossler equations, X] is obtained with a relative error less
than 7%, and k2 is less than 7% of X~. For the Mackey-
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TABLE I. L a unyapunov-exponent spectrum fo
used in the diAerent s s

or various known model s
h l b fd

to 10 ), and the dela tim
er o ata points N, the precision of t

y time r are given in the tabl
of the data (from

i e int etext.
tim

'
e ta e; all other parametme ers are as de-

System

Lorenz (r = 206t)
(o = 16, II = 4.0, E. = 45.92)
(N = 5000, 10 t precision)
Rossler (r = 126t)
(a = 0.15, 5 = 0.2, c = 10)
( = 000, 10 precision)|+=5
Mackey-Glass (r = 9At)
(a = 0.2, 5 = 0.1, c = 10, T = 30)

, 000, 10 precision)%=100

Mackey-Glass (r = 9At)
(a=0.2, 5=0.1, c=10, T=23)
(N = 5000, 10 precision)

Mackey-Glass (r = 9bt)
(a=02, 5=0.1, c=10, T=23)

, 000, 10 precision)X = 30 -4

Reported A; in the abse
presence of noise)

0.00
1.63 6 0.15

-22.46
0.05 6 0.25

0.090 (Ref. 5
-3.59 + 0.41

0.00
0.096 6 0.008

-9.8
-0.006 4 0.004

0.0071 (Ref. 6
-0.735 6 0.057

0.0027
O.OO75 + O.OOO7

0.000
0.0030 + 0.0010

-0.0167
-0.0027 + 0.0010

-0.0245
-0.0156 + 0.0006

0.00956 6
-0.0394 6 0.0064

0.00000
O.OOOO5 Ref. 21) 0.00938 + 0.00040

-0.0119 + 0
0.00008 + 0.00020

0.0001 -0.016060 + 0.0010
0.02271 -0.0734 +

(Ref. 21) 0.00946 + 0.00008
0.00064 + 0.00049

-0.0344 + 0.0001
-0.0134 + 0.0011
-0.0572 + 0.0135

0
U
0

I

288 488 688
t (At j

(a}
1888

C
e -8.882
C
0
CL -8.822

o —I3 Ql 42
C
3

-8.862 i

(b}
6888

I I

$88 488 588

FIG. 1. (a
(Et j

. 1. (a) Autocorrelation function, and () o g
nen s or the Macke -Gla

=0.1, c =10, and T=2
d ibd' h

nification of the region cl

'
e in t e text. The inset graph is a mag-

egion c ose to the origin in (a).

I

188
I

288

Glass equations with T =23 poand onl
wit a relative error less

0 0 ). For the Macke
2

T=30 a fiv -d
ackey-Glass system with

, a ve- imensional phase s ace isp q g
in s, rat er than 5000 so

of data points definin the
, so that the density

in s e ning the attractor is still acceptable

In this caase, XI is obtained with a rela
e secon positive exponent A, 2 is als2 is a so obtained

higher precision w

error o on y about 11%. W0. hen data of
were use, much smalle

were obtained. h

er relative errors
owever, given the low

dt (i, th h' he tg noise level), better
th' "1""'" th' 'bin e a sence of noise is not to

Th ibili f bi i y o o taining reasonable n

nt d depen s on their ma nitude
signal tonoise ratio of h d ' Siio o . ince a precision ofio o t e data. Si

is prescribed (i.e. the signal-to-noise rat
a a is low, and ~)I.3~ is more t

lar "'h'n~ f
puted ~X3~ is too sm Il

an t or the Rossler e uationsq ions, the com-

However, when the b
sma compared with thee reported )X3~.

e a solute values of the ne
ponents are comparabl h

e negative ex-

equations with T =30
ara e wit k~, as for the ackey-Glass

h h o bl
or 23, we obtain ne a

pore comparable to the re
re, using various known m
in nite dimensional, we hav
can e used to evaluate the L a u

ponent spectrum from 1 50
e yapunov-ex-

p '"rom on y 5000 data o
p por in a phase s a

an, and from 10000 oints o
cision in five-dimen

'
h

points of low pre-
- imensiona phase s ace.

and precisio n requirements for o
h . ince the number

observat ona data
is or er, and since no ad us
d dee e, our algorithm is articup y y o p

p a sons in practice.n wi espread a licati
is an in nite-dimensional rop o
se e ensity of points definin g

ing imension k increases. Since
obt i 1ees inear independence, the mini-

3231



VOLUME 66, NUMBER 25 PHYSICAL REVIEW LETTERS 24 JUNE 1991

Location LA FCL
Lt = 1 day At = 1 day

parameters ~ = 4 days v = 3 days
X = 14245 X = 36555

0.121 0.195
0.065 0.081
0.004 0.016

-0.059 -0.077
-0.174 -0.220

3.7 2.5
'T (d y)

TABLE II. Lyapunov spectrum k; and the error-doubling
time T computed from measurements of the daily surface tem-
perature at LA and FCL.

way to study atmospheric predictability quantitatively,
which is superior to the traditional, qualitative, signal-
to-noise analyses.
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mally required k (e.g. , k =3 for the Lorenz equations)
often yields reasonable Lyapunov exponents and greatly
reduces computer time. This has been confirmed in our
computations using different values of k. On the other
hand, when r is too small (e.g. , r =At =0.03, or m =1,
in Eckmann et al. ), x;,x;+, . . . , x;+(t,- ~) are not in-

dependent, and the minimally required k leads to a phase
space of dimension less than k. This explains why k=3
for the Lorenz equations did not yield good results in
Eckmann et a/. With their method, k must be in-
creased, which requires increasing the number of data
points and their precision so that the level of contamina-
tion of the data remains relatively low. The use of dE
and dM in Eckmann et al. plays a role similar to in-

creasing the delay time ~.
Our algorithm has been applied to daily observational

data of temperature and pressure over the United States
and the North Atlantic Ocean. Detailed results will be
published elsewhere, ' but we brieAy summarize them
here. The Lyapunov-exponent spectrum computed from
the time series of surface temperature in Los Angeles
(LA), California, and at Fort Collins (FCL), Colorado,
are shown in Table II. Since one of the exponents must
be zero, we recognize that X3=0 (which is well within
the error bars). Thus, the sum of the two positive
Lyapunov exponents gives an estimate of the Kolmo-
gorov entropy, and its inverse, multiplied by ln2, gives
the predictability (error-doubling) time T, which is also
shown in Table II. It is seen that the time series for the
temperature has two positive Lyapunov exponents, which
implies that the atmosphere has a hyperchaotic attractor,
with an error-doubling time T of about 3.7 days in LA,
where the climatic signal-to-noise ratio is high, and
about 2.5 days in FCL, where the signal-to-noise ratio is
relatively low. These values are within the range of pre-
vious estimates. Therefore, our method offers a new
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