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Surface Diffusion and Fluctuations of Growing Interfaces
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We discuss a model for the growth of interfaces relaxing by surface diffusion. We show that thermal
noise can produce novel large-scale orientational Auctuations in the active zone of the growth. The re-
sulting growth morphology is related to the structure of membranes and cannot be described by existing
theories of self-affine growth.

PACS numbers: 68.55.jk, 05.70.Ln, 81.15.—z

Growing clusters and films often evolve into fascinat-
ing self-similar and fractal patterns. Generally, both the
interior and the exterior of the cluster can develop a
fractal structure. In a number of cases, however, the
growth process is restricted to a thin "active zone" on
the outer surface while the interior is dense. Well-known
examples are amorphous films grown by ballistic deposi-
tion, flame fronts, and the growth of tumors.

A general framework has been proposed' to discuss
the scaling properties of growing interfaces. The width
w(L, t) of the interface was predicted to depend on the
sample size L and the growth time t as w (L, t)
=L~f (t/L'), with f(~) =const and f(x) —x~l' for
small x. The exponents g and z characterize the nature
of the growth-induced roughness. Kardar, Parisi, and
Zhang (KPZ) proposed an analytic model for growing
interfaces. They found that z = —,

' and g= 2 for one-
dimensional interfaces (d= 1). For d=2, only numerical
results are available.

In this paper we discuss the effects of conservation
laws on this scaling. The relaxation of surface features
of thin films proceeds, under normal conditions, by sur-
face diffusion which obeys mass conservation. Experi-
mental studies and numerical simulations of these sys-
tems reveal the presence of large-scale structures (deep
narrow grooves, voids, etc.) not encountered in the KPZ
model. Conservation laws are well known to have
significant effects on dynamical scaling phenomena such
as increasing the dynamical exponent z. We will see
that in growth problems, conservative relaxational dy-
namics leads to an increase of the exponent g. This has
important consequences. "Solid-on-solid" (SOS) models
for the cluster surface (such as the KPZ theory) are
meaningful only for g & 1. For g & 1, the cluster surface
would extend into the cluster interior at long enough
length scales and develop overhangs which would mean
breakdown of the SOS description and destruction of the
long-range orientational order of the surface.

The exponent g increases as we decrease the dimen-
sionality d. We will call the dimensionality d below
which g & 1 the "lower critical dimension" dL. For the
KPZ theory, g & 1 in any d so the SOS description is al-
ways valid. This is in marked contrast to the situation
discussed in the following where we will see that dL

exceeds 2, so g & 1 for d=1 and 2.
To study the eff'ect of conservative dynamics on both

dl and g, we first reexamine the SOS model for growing
interfaces. Let h(r, t) describe the height profile of a d-
dimensional surface whose growth proceeds along the lo-
cal surface normal ("Eden madel" ). By demanding that
the growth velocity depends only on the local surface
morphology through rotational invariants (such as the
curvature), one finds for the growth rate

= —K(V')'h+ vV h+ —,
' X(Vh) +rl(r, t), (1)

to second order in h. Here, X is the average growth ve-
locity and ri(r, t) describes the statistical noise of the in-
coming particle flux. The noise will be assumed to be
Gaussian white noise with a correlation function

(ri(r, t)ri(0, 0)& =2D6(r)8(t) . (2)

The equation of motion (1) is taken to be in the frame
comoving with the interface with average velocity k.

Equation (1) is a phenomenological model and the
quantities E and v must be identified from physical con-
siderations. In the absence of any conservation law,
there is no reason for v to be zero. In that case, the
vV h term will dominate the K(V ) h term as far as the
asymptotic, long-length-scale properties are concerned.
If we set K =0 and assume v )0, then Eq. (1) reduces to
the KPZ model which produces surfaces with the
aforementioned scaling law with g & 1. The constant v

is proportional to the surface energy. Relaxation by eva-
poration and recondensation during high-pressure chemi-
cal vapor deposition falls, for instance, in this category.

For a system obeying mass conservation, relaxation
proceeds via surface diffusion. The surface diffusion
current j is proportional to Vp, with p the chemical po-
tential. The chemical potential is a scalar so it can only
depend on rotationally invariant quantities. ' The
lowest-order invariant is the interface curvature V h, so

p ~ V h. By mass conservation, Bh/rlt is proportional to
V. j and thus to V h. This argument produces only the
erst term of Eq. (1). In other words, for conservative re-
laxation, rotational invariance implies v =0. ' The con-
stant K is proportional to the surface diff'usion constant
as well as the surface energy. An example is growth by
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sputter deposition. From now on we will refer to v as a
"surface tension, " while a surface controlled by KV h re-
laxation will be called "tensionless" (even though K is
actually proportional to the surface energy ).

The surface diAusion term is much less eKcient in re-
laxing large-scale surface features than the surface ten-
sion term of the KPZ model. We thus would expect to
encounter more disordered surfaces. It is, however, im-
portant to note that the noise —as defined in Eq. (2)—as
well as the quadratic, lateral growth nonlinearity in Eq.
(1), violates the conservation law. It is only the surface
relaxation which is conservative; the incoming flux,
which produces both the noise and the nonlinear term in

Eq. (1), obeys no such law. '' Thus, even though the ini-
tial, bare value of v is zero, there must be an effective,
noise-induced nonzero v at large length scales. One
would thus naively expect the KPZ model to remain val-
id asymptotically.

We will start our analysis with the special case X=0,
in which case Eq. (1) is harmonic. In this harmonic re-
gime, Eq. (1) becomes a Langevin equation which is

readily solvable. The result is that, after a transient
period, the surface configurations are controlled by a
Boltzman distribution. The probability P(jh(r)1) for a
given height profile h (r) to be realized is, for v =0, given

by

dD/dl = (z —2g —d+ gdX /4)D,

dK/ dl = [z —4+ a (d )gd k /4] K,
dk/dl = (@+z—2)l,
d v/dl = (z —2) v+ (8 —d) KA gd X /4d,

(7a)

(7b)

(7c)

(7d)

tively IIat. ' Thus, gp can be estimated from (5) by set-
ting G(g~) = 1. This yields

a exp(const K/D), 1=dL,
(K/D) '"' " 1 & dL .

(6)

For distances r ) g~, the SOS description is actually in-
consistent. Numerical simulations of membranelike sur-
faces indicate that such surfaces become highly convolut-
ed for r & g~ with overhangs, grooves, etc. ' Let us
stress that the SOS description, though breaking down
for r ) (~, can still be used to estimate the persistence
length g~ in excess of which overhangs and inlets will ap-
pear.

We now turn to the behavior of the nonlinear theory,
Eq. (1) with k&0, using a renormalization-group (RG)
analysis similar to that of KPZ. The RG equations
were obtained by eliminating fluctuations in the momen-
tum shell Ae '& q &A (with A the momentum cutoA')
and by performing the rescaling r =e'r', t =e't ', and
h =e'~h'. To one-loop order we find the following:

P(jhj) ee exp' ——— d"r(V h)
2 D~ (3) where

This particular distribution function has been examined
in detail in the context of the fluctuations of membranes
and we can take over the analysis. ' The fluctuations of
membranelike surfaces are characterized most con-
veniently by the orientational correlation function G(r)
defined as

G (r)—:([Vh (r) —Vh (0)1 ) . (4)

For an asymptotically IIat surface, G(~) is a constant,
while for an orientationally disordered, crumpled sur-
face, G(~) diverges. By (3), one finds for G(r), in the
limit r = Irl

(D/K)r d 1 & 1H

G(r) ~ ' (D/K)ln(r/a), d =dt

const, d & dL,

(5)

where dL =2 is the (harmonic) lower critical dimension
and a, a short distance cutoA'. Thus, for d & dL the sur-
face is asymptotically flat while below or at dI it loses its
orientational order with increasing r. Within harmonic
theory, the growth exponents are gH = (4 —d)/2 and
z~=4 for d & dL. For d ~dL, we can characterize the
degree of orientational order by introducing the per-
sistence length g~ such that for r))g~ the orientational
correlations are lost while for r & gp the surface is rela-

a (d) = (5d —22d —16)/41(d+ 2)

and gd =&d(2tr) A DK (sd is the d-dimensional
unit-sphere area). In contrast to KPZ, in deriving Eqs.
(7) we considered the regime with small tension,
I vl «KA, since v(1=0) =0 as discussed above. By
choosing g and z to keep D and K constant, we obtain
from Eqs. (7a)-(7d)

dk/dl =k j(8 —d)/2 —[3a(d) —1]gdk /8j . (7e)

g = 2+28,

z =4 —2e.

(8a)

(8b)

It immediately follows from Eq. (7e) that for l
X(l) scales to zero only for d & 8. The harmonic theory
is thus valid at long length scales only for d & dU =8 and
we can identify d~ =8 as the "upper critical dimension. "
The RG liow lines for d &8 are shown in Fig. 1(a). We
find two fixed points at the boundary between the KPZ
and an unstable phase: For X* = v =0, we recover the
harmonic fixed point with @=AH =(4 —d)/2 and
z =zH =4. In addition to this, for 8 —d =e & 0 there ap-
pears a new, anharmonic fixed point, with k* =construe
and v* =0, to O(e). ' This anharmonic fixed point is
more stable than the harmonic fixed point as is evident
from Fig. 1(a). The associated scaling exponents are, to
O( ) 14
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FIG. 1. (a) Renormalization-group flows in the (k, v) plane
for d ~8. H, harmonic fixed point; 2, anharmonic fixed point.
To lowest order in a=8 —d, v* =0. (b) Exponents z and g as
functions of d. For d & 8, z =4 and Z=(4 —d)/2 exactly (solid
lines). Dotted lines: extrapolation of these values to d (8.
From Z(dl ) =1, one finds dl =2. Dashed lines: leading-order
corrections in ~ for d & 8. For d & 8, z+g =2 exactly, so
z(dL) =Z(dL) =1 at dI, giving dL = —", to lowest order in a

(9)
so that the persistence length (~, as estimated by
G(g~) = 1, is

(Ld —2KjD) I/2(z —
I ) (10)

Here LG =(K jX D) '! is the Ginzburg length asso-
ciated with crossover from harmonic behavior [Eq. (5)]
to anharmonic behavior [Eq. (9)].

Our anharmonic fixed point is, however, unstable
against deviations of the surface tension v away from its
fixed-point value v* =0 [to O(s)l as depicted in Fig.
1(a). ' The associated eigenvalue is y =2 —2a For
v) 0, v(l) steadily increases with l, implying that, at
large enough length scales, the interface will crossover to
the surface-tension-dominated behavior discussed by
KPZ. For v (0, v(l) becomes more and more negative

This is a very interesting result because, as shown in

Fig. 1(b), it indicates that the harmonic theory underes
timates the actual value of g. Recall that @=1 at the
lower critical dimension. From Eq. (8), we estimate that
g=z =1 at d =dL = z, as indicated in Fig. 1(b). ' Al-
though this result may be aAected by higher-order
corrections in e, it strongly suggests that the lower criti-
cal dimension will exceed the harmonic-theory estimate
dL =2. One- and two-dimensional surfaces are thus
below the lower critical dimension. The inequality
dL & dL =2 is also plausible on physical grounds: The
relevant quadratic nonlinearity in Eq. (1) is due to la-
teral growth effects which always make interfaces
rougher. They thus should increase the value of g with
respect to the harmonic-theory estimate gH, so dL ob-
tained from g(dL) =1 has to be above dL obtained from
gH(dp) =1.

The orientational correlation function G(r), Eq. (4),
is, for 1& dz, given by

G (r) —(DjK)LG (rjLG )

with increasing l. In this regime the interface is unstable
against finite-wave-vector modulation. Thus, only for a
particular critical value of the bare surface tension
v(/=0), say v„do we have the "tensionless" scaling be-
havior associated with the exponents of Eq. (8). We saw
that v, is zero within the present O(e) calculation. '

However, as noted before, the nonconservative terms in
the equation of motion (1) will generate a noise-induced
fluctuation contribution to the surface tension, so in gen-
eral v, must be nonzero.

What are the implications of these results for the in-
terface morphology'? If the noise level is weak or X

small, v, will be nonzero but still small. On the other
hand, for a system with conservative relaxation, the bare
value of the surface tension, v(1=0), is zero. This
means that over a considerable range of length scales we
should be close to the "tensionless" critical region and
that one should be able to observe a rich crossover be-
havior: At scales up to the Ginzburg length L~, the in-
terface structure will be described by the harmonic
theory, i.e. , Eq. (5) should be valid. For length scales
longer than L~, anharmonic eA'ects become important,
i.e., we cross over to Eqs. (8) and (9). Eventually, the
noise-induced surface tension becomes important —RG
flows move v(l) away from the small-surface-tension re-
gion v= v, . If v(l) is positive for large i, we cross over
to the KPZ behavior, while for v(l) negative, the surface
should exhibit finite-wave-vector instabilities.

To examine which one of these possibilities is realized
for a system with zero bare surface tension, v(1=0) =0,
we performed a numerical simulation of Eq. (1) in
d= I, ' which indicated that v(l) flows into the unstable
region of negative v values. This would mean that for
zero "bare" surface tension v(l=O), e.g. , as in sputter
deposition, the noise generates a negative effective sur-
face tension, destabilizing the interface. In other words,
as we decrease v in Eq. (1), the KPZ phase becomes un-
stable at a small positive value v, of v(l =0).

We believe that this result is of a general nature. The
fact that v(l ~)eO while v(i=0) =0 is due to the
nonlinear term in Eq. (1) which, as mentioned, always
destabilizes the surface. Recall that it increases the ex-
ponent g with respect to the harmonic theory, both in the
present calculation and in the KPZ model. As a result,
this term is likely to produce a destabilizing negative
effective surface tension if initially v(l =0) =0—al-
though this claim would have to be confirmed by a calcu-
lation to order a . ' If true, it would imply that for con-
servative dynamics with v(l =0) =0, the asymptotic
properties are not controlled by the KPZ fixed point but
rather by the unstable region of Fig. 1(a).

The true morphology of such surfaces at very large
length scales cannot be addressed within the present
methods, although the crossover behavior discussed in
this work will dominate in a considerable range of length
scales. The asymptotic morphology is expected to have a
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convoluted, membranelike appearance, but testing this
will require numerical studies which go beyond the SOS
model.
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Note added. —After this work was submitted we re-
ceived a number of preprints considering fluctuations of
surfaces relaxing by surface diAusion. '
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