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Spin-Orbit Scattering and Magnetoconductance of Strongly Localized Electrons
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The eff'ect of a magnetic field on the tunneling probability of strongly localized electrons is calculated
in the presence of spin-orbit scattering. Numerical (transfer matrix) and theoretical (replica analysis)
arguments indicate a positive magnetoconductance, but no increase in the localization length. Universal
and nonuniversal aspects of the tunneling probability distribution, and their relation to the symmetries of
the Hamiltonian, are discussed.
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The role of quantum interference eA'ects on magneto-
conductance (MC) and conductivity fiuctuations has
been extensively studied for weakly localized electrons. '

In the absence of spin-orbit scattering (SO), a magnetic
field causes an increase in the localization length (a posi-
tive MC), and a factor of 2 decrease in the conductance
fluctuations. These results are attributed to suppression
of backscattering loops by a magnetic field. With SO,
the magnetic field has the opposite eA'ect of decreasing
the localization length (a negative MC), but still reduces
the conductance fluctuations. Symmetries of the under-
lying Hamiltonian, and their modification by a magnetic
field, can also be invoked to support these conclusions.

The behavior of conductivity and its fluctuations for
strongly localized electrons is, however, more controver-
sial and less well understood. The main mechanism for
conductivity in this regime is by electron tunneling. "
Nguyen, Spivak, and Shklovskii (NSS) have empha-
sized that one must account for the quantum interfer-
ence of forward scattering -paths to the tunneling proba-
bility. Treatments that ignore the correlations between
such paths conclude a positive magnetoconductance, but
no change in the localization length, whether in the
absence or presence of SO. On the other hand, a
random-matrix approach predicts that a magnetic field
leads to a doubling of the localization length g (big, posi-
tive MC) without SO, but a halving of g (big, negative
MC) in the presence of SO. Previously we demonstrat-
ed, within the NSS model, that without SO a magnetic
field leads to a small increase in the localization length.
Here we demonstrate that with SO, there is still a posi-
tive MC, but no change in the localization length. We
also discuss why our results diA'er from those obtained by
other approaches.

The starting point is the Anderson-type Hamiltonian

Pc =~ Eiai' ~Q; ~+ ~ Vij Q'Q''Qf Q'Qj
i, a (ij),era'

where e; are the random-site energies. The nearest-
neighbor-only hopping elements are set to Vj=VU;j,
where V is a constant, and each Uj is a randomly chosen
SU(2) matrix, describing the spin rotation due to strong

SO on each bond. ' The tunneling probability between
two sites is related to their overlap, which using a "loca-
tor" expansion ' can be written as

( ~G(E) ~f '& =g+
ir E air

(2)

(4)

The overlap is expected to typically decay as exp( —t/(),

The above expression is a Feynman sum over all possible
trajectories I between the initial (i) and final (f) sites,
as derived by standard perturbation theory. Each bond
along the path contributes a random spin rotation U, and
a phase factor from the magnetic vector potential A. To
simplify the energy denominators, we use the NSS mod-
el in which the energy of the initial and final sites is set
to zero, while the intermediate t.'; take on values of + e or
—e with equal probability. A path of length l now con-
tributes an amplitude e(V/e)' to the sum, as well as an
overall sign and rotation matrix. In the localized regime,
the sum is rapidly convergent, dominated by its first few
terms. ' [Clearly the sum is bounded by one in which all
terms make a positive contribution, i.e., by a lattice ran-
dom walk, which is convergent for z(V/e) ( 1, where z
is the lattice coordination number. This provides a lower
bound for the delocalization transition. ] Thus for V/e
«1, corresponding to strongly localized electrons, Eq.
(2) is dominated by the shortest paths connecting the
end points. Following NSS, we maximize the interfer-
ence between such forward scattering paths-by choosing
i and f to lie along the diagonal of a square lattice, as in

Fig. 1. All shortest paths I ' now have the same length t,
and the tunneling amplitude simplifies to

4 =(tcr~G(0) ~f'a'& =e(V/e)'J(t),
(3)

J(t) =g+sgn(e;„, )e' U.
I ir

After averaging over the initial spin, and summing over
the final spin, the tunneling probability is
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FIG. 1. Directed paths contributing to the tunneling be-
tween diagonally separated end points. The averaging over SO
pairs forward and time-reversed paths, and their spins, as indi-
cated.

where g is the localization length. From Eqs. (3) and
(4) we see that g

' =go '+gg ', i.e., the localization
length has a local contribution go

' =In(e/V), and a glo-
bal contribution gs

'= —lnI(t)/2t. The latter contains
all the important quantum interference information.

We numerically studied the statistical properties of
I(t), using a transfer-matrix method to exactly calculate
I up to t =1000, for over 2000 realizations of the random
Hamiltonian. As before we found that the distribution
is broad (almost log-normal), and that the appropriate
variable to consider is lnI(t). In Fig. 2 we have plotted
(lnI(t)) vs t, with and without SO and at various mag-
netic fields. In all cases, the asymptotic slope gives the
global contribution gg

' to the (inverse) localization
length. We first note that the introduction of SO is ac-
companied by a significant increase in tunneling, i.e., an
increase in g. Second, the addition of a magnetic field
leads to an increase in (lnI(t)), but in qualitatively dif-
ferent manners in the absence or presence of SO.
Without SO, there is a change in slope, i.e., the most im-
portant eff'ect of the field is to increase the localization
length. This is an enhancement of tunneling that grows
exponentially in t. By contrast, with SO, we observe that
the slopes in Fig. 2 remain unchanged. Thus the eAect
of the magnetic field is to enhance the tunneling rate by
a t-independent constant, i.e., there is no change in the
localization length. Finally, Fig. 3 indicates that we can
collapse the data for diferent values of 8 and t, using the
combination Bt as the argument. In fact, the behavior
of the scaling function is

r

c8 t if 8 t &1,
(lnIso(t, B))—(lnIso(t, O)) = '

C if8 t &1.
We can gain some analytic understanding of the dis-
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FIG. 2. Log-averaged tunneling probability vs t, with and
without SO, and at various magnetic fields shown on the right.
Bottom: Increase in tunneling (MC) (solid lines), without SO,
from the zero-field value 1(0). Saturated behavior in a strong
magnetic field (asterisks) is simulated by replacing the gauge
potential with random phases on bonds. Addition of SO in
zero field leads to the curve with plusses. Top: Since MC ~ith
SO is small, the increase is plotted at enlarged scale.

tribution function for I(t,B) by examining the moments
(I(t)"). From Eqs. (3) and (4) we see that each I(t)
represents a forward path from i to f, and a time-
reversed path from f to i. For (I(t)"), we have to aver-
age over the contributions of n such pairs of paths. First,
averaging over the random signs of the site energies
forces a pairing of the 2n paths (since any site crossed by
an odd number of paths leads to a zero contribution).
Next we must average over the random SO matrices on
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FIG. 3. Scaling of MC in the presence of SO from the top
part of Fig. 2 with 8 and t.
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each bond. Again a bond crossed only once gives zero
average ((U, ii) =0). From the orthogonality theorem of
group representations it can be shown that only the fol-
lowing paired averages are nonzero:

(U.,U.*,) = —,', (Ui 1 UJ i) = —', (Ut J U J!) = (6)

and their complex conjugates. Thus two classes of
paired paths survive the averaging: (1) Neutral paths in

which one member is selected from J and the other from
J . Such paths are forced to have parallel spins and do
not couple to the magnetic field. (2) Charged paths in

which both elements are taken from J or from J . Such
pairs must have antiparallel spins and couple to the mag-
netic field like particles of charge + 2e. These con-
straints are indicated in Fig. 1 which shows a possible
contribution to (I ).

Since at each site any path has a choice of two direc-
tions, we may naively expect (I(t)") to asymptotically
scale as 2"'. [The factor of —,

' from the bond averages in

Eq. (6) cancels with the choice of two spin directions at
each site. ] This ignores the correlations between paths
which manifest themselves when two paired paths inter-
sect. '' Since at each intersection the pairs may ex-
change partners there is an additional statistica1 attrac-
tion for such crossings. The attraction factor is 3 with
B=O and no SO (orthogonal symmetry), and decreases
to 2 in strong fields (unitary symmetry). With SO, we

must also take into account the allowed spin exchanges,
and we find that the intersection of two paired paths re-
sults in an exchange attraction of —,

' (symplectic symme-

try). The sum over n attracting paths then leads to

(I(t)")=A (n) 2"'exp [pn(n —1)t] .

The eA'ect of correlations is thus described by the param-
eter p, which is an increasing function of the strength of
the attraction between paths. We have also included an
overall amplitude A(n). From the scaling of the mo-

ments with n, it follows that lnI(t) is approximately nor-

ma1, with mean and Auctuations given by

(lnI(t)) =(ln2 p)t, var[lnI(—t)]—(pt) t .

[We have numerically confirmed the —', power law for
the variance of lnI(t) with and without SO.]

We can now appreciate the trends in Fig. 2, as the
slopes are indicative of the statistical attraction factors.
Without SO, the magnetic field gradually reduces the at-
traction factor from 3 to 2 leading to the increase in

slope. The addition of SO to the Hamiltonian has the
similar eff'ect of suddenly decreasing the attraction to 2 .
Why does the addition of the magnetic field lead to no

further change in p in the presence of SO? Without SO
the origin of the continuous change in the attraction fac-
tor is the type of exchange indicated in Fig. 1, whereby a
charged bubble appears from the intersection of two neu-
tral paths. In the presence of SO, from the averages in

Eq. (6) we calculated the contribution of such configur-

ations to be zero. Thus the neutral paths traverse the
system without being affected by the magnetic field;
their attraction factor, and hence p and g, remain un-

changed. The smaller positive MC observed in the simu-

lations is due to the quenching of the charged paths by a
magnetic field. The resulting change is thus only in the
amplitude A(n) of Eq. (7). Certainly the above discus-
sion is too terse and conveys only the essence of the argu-
ments. We defer a more detailed discussion to future
publications so that in the remaining space we can sum-

marize the implications of our results, and contrast them
with related works.

(1) A one-parameter scaling assumption' is the cor-
nerstone of the scaling approach to weak localization, '

and has also been extended to the localized regime. '
From Eqs. (4) and (7) we see that description of the tun-

neling probability requires at least two parameters, as
the localization length g depends on the loca/ factor e/V,

as well as the globa/ factor p. However, p does control
the nontrivial scaling of the distribution (up to the am-

plitude A). We further note that Eq. (7) is only valid

for low moments, i.e., near the peak of the distribution
for lnI. The behavior of very high moments, i.e., the tail
of the distribution, is found to be nonuniversal and

reAects the local behavior of the random potential. Simi-
lar nonuniversal scaling of moments has been reported
recently close to the localization transition. ' To make a
concrete connection between the two limits, we need,
however, a better understanding of the relation between
the tunneling probability in Eq. (4) and the dimension-
less conductivity g studied in the scaling approach. '

(2) In the independent-path approximation (IPA), '

correlations leading to the nontrivial scaling of moments
in Eq. (7) are ignored. Hence (I")=A(n)2"', and the
MC reflects the changes in the amplitude A(n). With-
out SO, all pairings of 2n paths contribute equa11y at
B =0 [A(n, B =0) =(2n —1)!!],while only neutral paths
survive at finite field [A(n, B&0)=n!]. The difference
between these two numbers at n =0 gives the increase by
ln2 of (lnI) predicted by IPA. Recent experiments at
low tempertures' observe increases in relative conduc-
tance by factors much larger than unity, in disagreement
with IPA, but consistent with Fig. 2. Although IPA
clearly fails without SO, it is close to the mark in the
presence of SO as the observed initial increase of B t

[Eq. (5)] precisely follows from the quenching of
charged paths. Using the IPA, Meir et aI. predict a
universal increase of C =

6
—ln2 =0.140 in lnI for

sufficiently strong fields [see Eq. (5)]. Our numerical re-
sults yield a saturation value of C=0.32. However, we

believe this increase is nonuniversal, as the behavior
changed once we reduced the concentration of SO im-

purities.
(3) The random-matrix approach (RMA) to the prob-

lem ' takes as its input only the symmetries of the
Hamiltonian, and the assumption of a single-parameter
scaling. It predicts that the magnetic field results in
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doubling of the localization length ( in the absence of
SO, and a halving of ( with SO, in clear contradiction to
our results. Despite its simplicity and generality, RMA
has a number of shortcomings. First, it is assumed at the
outset that a single parameter is sufhcient for character-
izing the problem. As we demonstrated, description of
the localization length (using the tunneling probability)
requires both a global and a local factor; hence varia-
tions in g cannot be universal. Second, by considering
the most general random matrices the approach loses all
information on spacial connectivity and dimensionality.
(The equivalent approximation for spin problems allows

any spin in one layer to interact with all spins in neigh-
boring layers. Thus it has the flavors of both one-
dimensional and infinite-range models. ) The correct ap-
proach is to consider the ensemble of sparse random ma-
trices in which only elements close to the diagonal are
nonzero. Finally, symmetry arguments imply that the
addition of a magnetic field, by destroying time-reversal
symmetry, immediately changes a system with or
without SO to one completely described by a unitary en-
semble. In fact, from Fig. 2, we do see that the magnetic
field in the absence of SO derives the localization length
towards its unitary limit (obtained by placing random
phases on each bond). However, the change in g is gra-
dual, and not immediate. Furthermore, there is no
change in g with SO. The latter is due to the form of the
Hamiltonian. To reach the unitary limit with SO, one
has to also include Zeeman-splitting terms. Such terms
are certainly allowed by symmetry, but involve a much
higher energy cost. RMA cannot account for such
subtleties.

(4) Recent experiments on Au-doped Inq03, films'
observe a transition from negative MC at small disorder
to positive MC at large disorder. This is attributed' to
an interplay between weak-localization effects (causing
negative MC with SO) at scales less than g, and strong-
localization effects (positive MC) at scales larger than g.
To account for the insensitivity to the addition of Au, it
is also suggested' that addition of SO has little efIect on
the strongly localized regime. This is in conflict with the
results of Fig. 2 at high concentrations of SO. However,
a more dilute SO concentration may not be in contradic-
tion with the experimental results. We also note that the
sign of MC at small fields cannot be changed by what
goes on at short distances. The local contribution to
(lnT) in Eq. (4) must be analytic, and scale as B t, while
the global change in (lnI) scales as B t [Eq. (5)].
Hence there is always a positive MC at low fields at
sufficiently large t (it may cross over to a negative MC at

higher fields). Numerical simulations at the scale of g
are in agreement with such a picture. If a positive MC is
a signature of the localized regime, it can only be recon-
ciled with a negative MC predicted by the weak-local-
ization theories with strong SO through a possible phase
transition. ' Could the observed change of sign in the
experiments be a finite-temperature manifestation of
such a zero-temperature phase transition? Certainly
more experimental and theoretical studies are in order.
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