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Semiconductor-Metal-Semiconductor Transitions in the Superstoichiometric Dihydride YH2 to
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A metal-semiconductor transition has been observed in the range 230-260 K for the first time in a
slightly superstoichiometric rare-earth dihydride, YH2 )0 (as compared to the x-rich systems CeH2+
and LaH2+, with 0.7 ~x S0.9), implying an order-disorder transformation in the octahedral sublattice
of the excess hydrogen atoms as the driving mechanism. Furthermore, a resistivity minimum in the
range 60-80 K was observed, indicating for the first time in such systems an additional metal-
semiconductor transition towards lower temperatures.

PACS numbers: 71.30.+h, 61.50.Ks, 72.80.Ga

Unusual metal-semiconductor (M-S) transitions, in
the sense that the low-temperature phase was metallic
and the high-temperature phase semiconducting, were
unambiguously observed for the first time in the rare-
earth hydride system CeH2+„, for 0.7 ~ x ~ 0.8, by
Libowitz, Pack, and Binnie. The transition occurred
between 200 and 240 K, depending on the excess hydro-
gen concentration x, and was already at that time related
with a small tetragonal distortion of the originally fcc
fluorite-type structure. Recently, these measurements on
CeH2+„were repeated by Shinar et al. and extended to
the system LaH2+„using a contact-free Q-meter tech-
nique. In the latter case, similar M-S transitions were
observed in the range 0.8 ~ x ~ 0.9, with the peak tem-
peratures T~ for the resistivity situated in the interval
200-260 K. These authors analyzed the behavior at
high temperatures in the framework of variable-range
hopping and associated the transition with a superlattice
of octahedral vacancies forming at temperatures below

Tp and breaking down above it. The previously de-
scribed measurements were all performed at tempera-
tures higher than 120 K, because of obvious contact
problems, the samples being very brittle and chemically
reactive, and the Q-meter technique being difficult to
adapt to a He cryostat. Thus up to now there existed no
real low-temperature resistivity measurements in such
systems.

We have been studying the electrical resistivity of non-
stoichiometric rare-earth dihydrides for a series of met-
als and have established, as one important result among
others, the close relation between the existence of an oc-
tahedral superlattice of the excess hydrogen atoms x and
the magnetism prevalent in many of these systems at low
temperatures (for a review, see, e.g. , Ref. 4). An inci-
pient metal-semiconductor transition was noticed in

PrHq76 at T~ = 280 K (Ref. 5) and in NdHq 65 near 290
K; attempts to heat the samples above room tempera-
ture led to their destruction. The data at low tempera-
tures were dominated by magnetic and crystal-field
eAects. Nonmagnetic LuH2+, on the other hand,
formed a two-phase system, with precipitation of its in-

sulating y phase, already for x of the order of a few per-
cent, leading to a percolating situation.

The present Letter describes some results obtained
from electrical resistivity measurements on the system
YH2+„, undertaken in the hope to gain new insights
from this essentially simpler (nonmagnetic) and more
stable compound. The specimens were prepared from
99.99 at. % pure yttrium foil obtained from the Ames
Laboratory (Ames, Iowa) and contain the main ( & 1

at. ppm) metallic impurities (in at. ppm) 20 Fe, 19 W, 5

Ni, 4 Cu, 3 Al, 3 Pb, & 2 Hf, and the other rare earths
11 La, 3.5 Pr, 3 Ce, 3 Gd, 2.8 Tb. They were cut into
20&1X0.25-mm strips and provided with four spot-
welded platinum leads as contacts. The ensuing hydro-
genation was performed in two steps: the first, at 550-
600 C, to give the "pure" dihydride, with ideally all
tetrahedral sites occupied, in this case YH

~ 97, the
second, adding the excess hydrogen atoms x on the octa-
hedral sites, at 250-300'C. For more details on the
preparation and on the problems related to the exact x
determination, see, e.g., Ref. 9. The resistivity measure-
ments were done by the classical four-point dc method in

a pumped He cryostat, in the range 1.5~ T~ 330 K.
The experiments were performed both on slowly cooled
(cooling rate —0.2 K/min) or relaxed (R) specimens
and on those quenched (Q) from room temperature into
liquid nitrogen (rate —10 K/min), in order to block a
possible hydrogen ordering on the octahedral sites. As
shall be shown in the following, we have observed, for
the first time, not only a metal-semiconductor transition,
similar to the x-rich systems CeH~+ and LaH2+
(Refs. 1-3) in the range of 230-260 K, for a strikingly
low x value (YH2 ~p), but, in addition, a completely
unexpected semiconductor-metal transition below -80
K.

Figure 1 shows the resistivity data of the relaxed (R)
YH2 lo sample taken with decreasing and increasing tem-
perature, respectively, and on those of the quenched
sample (Q) when heating from 4.2 K. The first observa-
tion concerns the appearance of a resistivity peak at T~
=235 K upon cooling, which is shifted to T~ =256 K
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vestigated YH2+„samples with 0~ x ~0.08, none of
them showing any M-S transformation at T &200 K, ei-
ther.

We shall, therefore, try to interpret the observed resis-
tivity behavior in YH2 ~0 in terms of two M-S transitions
and analyze the results accordingly. In Fig. 2, we plot
the logarithm of p as a function of the reciprocal temper-
ature, to fit a relation of the form

p =po exp(E./kT),

where the activation energy E, is derived from the slope
of the linear parts, as indicated. The high-T part around

T~ (left-hand side of Fig. 2) reminds one very closely of
the situation described for LaH2+„ in Ref. 3. It goes so
far that even the numerical value of

E, (YHz )p) =15 meV (pp =86 p 0 cm)

for the relaxed sample is close to the 18 meV given in
Ref. 3 for the lowest-resistivity LaH2sp specimen (po
=350 pQ cm). We are, thus, tempted to suggest the or-
dering transformation near 200 K as a possible driving
mechanism towards carrier delocalization in a defect
band around the Fermi level, creating the lower-T metal-
lic state. The fundamental diA'erence between the earlier
investigated x-rich systems' and our YH2 ~o lies in the
fact that the superlattice in the superstoichiometric dihy-
drides is formed by the octahedral hydrogens themselves
and not by their vacant sites such as in those sub-
stoichiometric trihydrides. Going further down in tem-
perature (right-hand side of Fig. 2), these weakly metal-
lic systems become semiconducting again, ' the charge
carriers being localized in very shallow levels separated
by a narrow gap from the conduction band of

=2E, =0.30 meV (po =132 p 0 cm) .

This situation is not very stable as it seems modified by
the quenched-in defects: The gap becomes even nar-
rower,

A~=2Eg=0. 25 meV (po =144 p 0 cm),

leading also to an earlier S-M transition: T;„=62K as
compared to the 79 K for the (R) case.

In conclusion, we have observed in YH2 to a very-
narrow-gap semiconducting behavior below 60-80 K,
turning metallic until a further M-S transition at 235-
260 K yielding a semiconductor with an effective activa-
tion energy of E, =15 meV. The latter transition is
driven by an order-disorder transformation of the octa-
hedral H sublattice of the x atoms, taking place around
200 K.

Hydrogene dans les Metaux is unite associee au
CNRS No. 803.
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