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Nonperiodic Solid Phase in a Two-Dimensional Hard-Dimer System
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We report Monte Carlo simulations of a system of two-dimensional, hard, homonuclear dimers. The
equation of state and the Gibbs free energy were computed for the fluid phase and several crystalline and
noncrystalline (aperiodic) solid structures. We observe that the differences in Gibbs free energy between
the various solid structures are much less than the contribution to the entropy due to degeneracy of the
"ground state" of the aperiodic solid. Hence, the thermodynamically stable solid structure of the system
corresponds to an aperiodic arrangement of the molecular centers of mass and orientations. The melting
point determined for this aperiodic solid is located within the observed narrow hysteresis region.

PACS numbers: 64.60.Cn, 61.20.3a, 61.42.+h, 64.60.My

Most atomic and molecular substances that occur in
nature form thermodynamically stable crystalline phases
at low temperatures. The most characteristic feature of
crystals is their periodicity. For a long time, it was as-
sumed that all thermodynamically stable solids have
periodic lattices. In other words, nonperiodic solids were
considered as metastable. In recent years, however, sev-
eral theoretical and experimental studies have indicated
the possibility that thermodynamicaIIy stable aperiodic
solid phases exist. Examples are incommensurate crys-
tals, ' quasicrystals, and "turbulent crystals. "

There are at least three distinct microscopic mecha-
nisms that may lead to an aperiodic solid. The first, usu-

ally relevant for incommensurate crystals, assumes com-
peting interactions, e.g. , between nearest and next-
nearest neighbors. ' The second mechanism, recently
suggested by Narasimhan and Jaric, assumes that it may
be possible that the intermolecular interaction in a dense
system is such that the energy of the system is minimal
in an aperiodic state. The third mechanism assumes
that entropy is the driving force. In particular, it is as-
sumed that the configurational entropy may exceed the
energy contribution to the free energy or the excluded-
volume eflects. (The latter two contributions usually
favor periodic structures. ) As a result a thermodynami-
cally stable disordered structure may occur. According
to this idea, candidates to form aperiodic solids are sys-
tems with a large configurational degeneracy of the
ground state or states close to it. Certain molecular
models exhibit such a property.

The simplest molecule in nature is a homonuclear dia-
tomic molecule. In the crudest approximation, in which
atoms can be thought of as hard spheres, the homonu-
clear diatomic molecule can be represented by a hard
dumbbell, consisting of two fused hard spheres of the
same diameter a (from now on we choose o as our unit
of length) and with centers at distance d=d*tT (d*
plays the role of an anisotropy parameter). The hard
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FIG. 1. Typical configurations of N =112 hard dimers: (a)

in the DC phase (p* =9.0) and (b) in the HB crystal (p*
=9.0). Dimer centers are marked by black dots.

dumbbell is the simplest hard nonconvex body. Howev-
er, its equation of state (EOS) and structural properties
are not known quantitatively except for the (low-density)
fluid phase, both in three and in two dimensions (2D). '

A hard dimer is a special case of the hard dumbbell with
the spheres just touching each other, i.e., with d* =1. It
is easy to verify that hard homonuclear dimers (HHDs)
have a large configurational degeneracy at close pack-
ing. '' In the case of a 2D system of HHDs, which is the
subject of the present work, it has been shown that the
degeneracy entropy per particle at close packing is equal
to kg ln2. 356. . . =0.857k'. ' At lower densities this en-
tropy competes with the excluded-volume efl'ects (vibra-
tional entropy). The high degeneracy entropy of the 2D
HHD system follows from the possibility of arranging
the disks forming dimers into a perfect triangular lattice
at close packing; the molecular mass centers are then
distributed on a Kagome lattice. At lower densities, for
typical aperiodic structures of the 2D HHDs, like that in

Fig. 1(a), the distribution of the molecular centers of
mass is expected to preserve the symmetry of the Ka-
gome lattice. In contrast, the free energy of some of the
periodic structures, e.g. , that in Fig. 1(b), may be
lowered by breaking the symmetry. It is not obvious a
priori what solid structure is the more stable one at
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lower densities. Mechanical simulations ' and a theoret-
ical study based on the free-volume approximation sug-
gested that the degeneracy entropy prevails, and in the
solid state the molecular mass centers and orientations of
the 2D HHDs do not show any periodicity; this aperiodic
phase will be further referred to as a disordered (or de-
generate) crystal (DC).

As both the mechanical simulations and the free-
volume theory are only approximations we performed
computer simulations to test the thermodynamic stability
of the DC phase. As will be shown below, we do indeed
find that the DC phase is stable. To our knowledge, this
is the first example of a continuous homomolecular mod-
el with an aperiodic distribution of the molecular mass
centers and orientations.

The EOS of the 2D HHDs was simulated using the
Monte Carlo (MC) method in the NPT and NVT en-
sembles. The details of the simulations will be described
elsewhere. '

Crystalline structures were represented by lattices
which at close packing contain one or two molecules in
the unit cell. There exist only four such lattices:' an
oblique Bravais lattice and three lattices with two mole-
cules per unit cell. We restrict our discussion here to the
herringbone (HB) structure, Fig. 1(b), as the EOS and
free energy of the HB structure diff'ered only a little
from that of any of the other three crystalline lattices
that were studied. In fact, the thermodynamic properties
of any specific realization of the aperiodic solid [for an
example, see Fig. 1(a)] were also quite close to those of
the solid with the HB structure.

Of course, the structure of the other ordered solids
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is very different from that of the HB lattice. These
structural aspects will be discussed elsewhere. '

The simulations of the crystalline and the aperiodic
solids were started at high pressures. The pressure was
then gradually reduced in subsequent runs down to the
point where the solid melted spontaneously (these "melt-
ing" pressures difrered slightly from one solid structure
to the next but they were never less than p*=pa —/kaT
=8.25, where p is the pressure, T is the temperature,
and ka is Boltzmann's constant). Some aperiodic struc-
tures were also generated by freezing the fluid. In these
cases the pressure was increased in the subsequent runs.
No self-diA'usion was observed in solids during the simu-
lations and the molecular arrangements were preserved,
except at melting. Hence, in order to sample diff'erent
realizations of the DC phase, a few series of runs were
performed in which, except for standard motions of sin-
gle molecules, certain groups of molecules were moved
cooperatively' (the idea of these additional motions is
shown in Fig. 2).

The NPT simulations of the fluid were performed us-
ing a square periodic box. In subsequent runs the pres-
sure was increased from p* =0.5 up to the spontaneous
freezing point of the sample, at p* =8.75.

In Fig. 3 the EOS branches corresponding to the HB
crystal, the DC phase, and the fluid are plotted. As can
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FIG. 2. Schematic changes of the molecular mass centers
and orientations for the cooperative motions mentioned in text.
It can be shown, see Ref. 14, that (i) any close-packed struc-
ture of the 2D HHDs has to contain at least one kind of the
presented clusters (obviously, difl'erent orientations are possi-
ble), and (ii) any close-packed structure of the 2D HHDs in

the thermodynamic limit can be obtained from the closely
packed Bravais lattice of the 2D HHDs by such motions only
(obviously, motions of such clusters have to be allowed also at
diflerent orientations).

FIG. 3. The EOS for the three structures discussed in the
text: the HB crystal (squares), the DC phase (pentagonal
stars), and the fluid [circles represent our data, solid dots rep-
resent the data of Refs. 10(b)-10(d)]. A few points in the
solid branches for which p (8,25 were obtained in the NVT
ensemble. The lines are drawn to guide the eye; p* is the rela-
tive density (the ratio of the density p=—N/V to its value at
close packing p,~

=3 ' a. ; N and V are, respectively, the
number of molecules and the area of the system).
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be noted, close to melting the densities of the DC phase
are slightly lower than those of the HB crystal at the
same pressures; at higher pressures the corresponding
densities are the same, to within the simulation error.

In order to determine the stability of the solid struc-
tures and to locate the melting transition, we calculated
the free energies per particle of the I]uid, fs„;d, and solid,
f,o~;d, respectively. For the Auid this was done by in-
tegrating numerically the fluid branch of the EOS. The
free energy of the solid structures considered was com-
puted using the Einstein crystal method. ' From the
free energy and the EOS one can immediately obtain the
Gibbs free energy:

g =f+pv .

The Gibbs free energies per particle of the HB crystal, a
typical aperiodic solid structure, ' and the Quid, obtained
at the two pressures bracketing the melting hysteresis re-
gion, are sho~n in Table I. As can be seen, the values
for the solids diA'er only slightly (the HB crystal appears
to be slightly more stable than the average aperiodic
structure). All these values are considerably higher than
the corresponding values of the Auid. The Gibbs free en-
ergy per particle of the DC phase, gDp, is, however,
lower than the average value, gD't-""' ', of individual
realizations of this phase because of the degeneracy en-
tropy per particle mentioned above: s Dp =0.857k&.
Taking this into account, we located the melting transi-
tion at p* =8.6(2) corresponding to p,*,~;d =0.824(3) and
p~*;q„;d=0.787(4), i.e., inside the observed hysteresis re-
gion.

The analysis of the solid branches of the EOS shows
that the Gibbs free energy of the DC phase is lower than
that of the HB crystal over the entire pressure range that
we studied. In Ref. 14 it is argued, on basis of a free-
volume argument, that the DC phase is also more stable
than the ordered crystalline structures near close pack-
ing. Hence we expect that the DC phase is thermo-
dynamically stable over the whole range of the densities
corresponding to the 2D H HD solid. Thus, the 2D
HHDs do not form a thermodynamically stable, periodic
crystal at any density.

The present work constitutes a starting point for a
more extensive study of the complete phase diagram of
general 2D hard dumbbells (0~ d* ~ I). The latter
study will be the subject of forthcoming papers. '"'
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