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Formation of the Condensate in a Dilute Bose Gas
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We examine the time evolution of a weakly interacting Bose gas in the course of the Bose-Einstein
phase transition and show that, in contrast with previous claims in the literature, the relevant time scale
for the appearance of the condensate is finite and, under the conditions we consider, of O(h/kt)T, ),
which is very small compared to the characteristic lifetime of the system due to inelastic collisions in the
gas.

PACS numbers: 67.65.+z, 32.80.Pj, 64.60.gb

The remarkable progress made in the last few years in

manipulating neutral atoms by means of electromagnetic
fields' has led to the exciting possibility of studying
very cold atomic samples in a density regime where the
Bose-Einstein phase transition is expected to occur in an
almost ideal fashion. The most promising candidate in
this respect is spin-polarized atomic hydrogen in a mag-
netic trap, ' although it has recently been proposed that
a combination of optical cooling and magnetic trapping
may also lead to Bose condensation in alkali-metal va-
pors, such as sodium and cesium.

In both cases the gas is effectively isolated from its
surroundings and has no interaction with a "thermal
heat bath, " which is essential for a thermodynamic
description to be valid. In these circumstances the ques-
tion of the time scale for the formation of a condensate
becomes a very urgent one, because for experiments to
be successful it is evident that this time scale should be
short compared to the lifetime of the sample. However,
both scales are due to the interaction between the atoms
and it is a priori not clear that this condition is satisfied
in general. Indeed, work by Levich and Yakhot indi-
cates that in an isolated situation the condensation time
is infinite.

The argument is essentially as follows: Assuming a
homogeneous system of W atoms in a volume V and
treating the collisions in the gas with a Boltzmann equa-
tion, phase-space arguments show that the production
rate of the condensate fraction is given by d/dt(No/
N) =C(v(T)(1+No)/V, where No is the number of parti-
cles in the ~k=0) ground state, a is the cross section for
elastic collisions with initial relative velocity v, ( )
denotes the appropriate average over the relative motion,
and C is a constant of the order of 1. This shows explic-
itly that in the thermodynamic limit (N, V ~, with

fixed density n=N/V) the production rate is nonzero
only if a condensate already exists. Notice that the
above argument is independent of the number of parti-
cles involved in the collision and applies also, with an ap-
propriate redefinition of (vcr), to three-body processes.
Therefore, the suggestion made by Snoke and Wolfe,
that three-body processes will nucleate the formation of
the condensate, offers no solution.

Moreover, the same reasoning is also valid for the in-
teractions of the gas with a thermodynamic heat bath if
treated with a Boltzmann equation. This was already
shown by Levich and Yakhot and more recently by
Tikhodeev. Therefore, the results obtained below are
also relevant to the Bose condensation of excitons in

CuqO (Ref. 9) and the proposed experiments with posi-
tronium inside crystal vacancies, ' although we consider
only the isolated case, with particularly spin-aligned
atomic hydrogen in mind.

We obtain a clue to the solution of this nucleation
problem by realizing that a Boltzmann equation is un-
able to treat the buildup of coherence, which is crucial
for the phase transition to occur. In this Letter we

briefly outline how to formulate a theory that takes the
existence of coherences into account and by which we
can actually study the time evolution of the condensate
fraction. The formalism is general enough to discuss, for
example, the final distribution of Bogoliubov quasiparti-
cles after the condensation has taken place and the mo-
ment when the property of superfluidity appears. Al-
though these are important issues in their own right we
defer them and various technical details to a following

paper and focus here on the condensation time.
To address this nonequilibrium problem we express

the Keldysh formalism'' in a functional form. Taking
the Hamiltonian of the interacting gas equal to

Q 2+20= dxilr$(x, t) )AH(x, t)+ —,
'

l dxJ dx'(it/(x, t)ilrg(x', t)V(x —x')ilrH(x', t)ilrH(x, t),
2fPl

2

with V(x —x') the predominantly repulsive two-body interaction potential and m the mass of the particles, the generat-
ing functional of all Green's functions is given by

r

ZIJ,J'1=(r exp'i ~ de„l dx(J" (x,e)pe(xe)+J(x, e)pie(xe)) ).
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Here T is the time-ordering operator along the Keldysh contour C shown in Fig. 1, yH(x, t) and y$(x, t) are the (Bose)
annihilation and creation operators in the Heisenberg picture, J (x, t) and J(x, t) are c-number sources, and (.) is the
average with respect to an initial density matrix p(to). For physical reasons we take p(to) to be the noninteracting
(grand canonical) equilibrium density matrix, although more complex initial conditions, depending on the precise exper-
imental circumstances, are possible as long as they allow for a Wick decomposition. The generating functional of the
connected Green's functions iW'[J, J*] is obtained by taking the logarithm of Z[J,J*].

To arrive at a description in terms of the order parameter (yH(x, t)) of the phase transition we need the Legendre
transform of W[J,J*],defined by the relations

(3b)

I [P*,P] =„dt „"dx[J(x,t)P*(x,t)+J*(x,t)P(x, t)] —8'[J,J*], (3a)

8w'[J, J*] &~[J,J*]
x, t x, t

8J(x, t )
' * 6J*(x,t )

assuming that Eqs. (3b) are inverted to eliminate the sources J,J* in Eq. (3a). I [P*,P] is the generating functional of
the one-particle irreducible diagrams (or vertex functions) and its importance for the discussion of a broken symmetry
follows from SI [p*,pl/Bp =J, showing that in the limit of vanishing sources we have a broken symmetry if
BI [p*,p]/6&=0 for p=(yH)&0. Note that in thermal equilibrium I [p*,p]/( —iP) reduces to the free energy of the
system and the condition 8'I [p*,p]/8p =0 to the requirement that the free energy is a minimum. '

More important for our purposes is the interpretation of —hI [P*,P] as an eAetci 'veaction S[P*,P] for the time evo-
lution of the gas, since using the definition of I [p*,p], Z[J,J*]can be written as a functional integral:

Z[J,J*]=" lim "„d[y*]d[y]expt —Sfy*,pl+i „dt
where "limt, o" means that we include only the tree
(no-loop) diagrams. This restriction is necessary be-
cause I [P*,P] already contains all diagrams of the
theory.

To calculate the action we must specialize to the case
of interest. A considerable simplification occurs because
we are dealing with a weakly interacting gas. Denoting
the scattering length by a this implies na (&1. There-
fore, three-body processes in the gas can be neglected
and we only need to evaluate the two- and four-point
vertex functions in the T-matrix approximation. '' Per-
forming the calculation we find that the action can be
expressed in terms of the (initial) particle distribution
N(k) and the retarded (advanced) T matrices T — (p,
p', P;E). For a Bose gas at low temperatures, well inside
the quantum regime we also have a small parameter
a/A, where A=(2trh /mkttT)'t is the thermal de Bro-
glie wavelength. As a result we can completely neglect(+)the dependence of T — on the relative momenta p and
p'. However, the dependence on the center-of-mass
momentum P and thus on the total energy E of the
scattering process is due to the presence of a surrounding

1

gas and cannot be neglected in general. From the T-

„dx[J(x,t)y*(x, t)+J*(x,t)y(x, t)]

matrix equation for T — we can show that

T (O, O, P;h P —/4m)
= T (0,0;0)/[1+ T (0,0;0):-(P)],

with T (p, p';E) the g—enuine two-body T-matrix with-
out the many-body aspect and:-(P) given by

:-(P)= P [N(P/2+p)+N(P/2 —p)l . (5)
(2z) h p

For the Bose distribution N(k) = (g 'e~'~k —I )
&(k) =h k /2m and g—:e~", the infiuence of the sur-
rounding gas is maximal when P =0. In that case

T (0,0;0):-(0)—=4(a/A)g&t2(j) —4(a/A) Jtr/I —g,

using T (0,0;0) =4+h a/m—and the properties of the
Bose functions g„(g). ' Below we show that this quan-
tity is indeed small for all practical purposes. In parti-
cular, at the critical point, 1

—g, turns out to be
O((a/A) t ) and therefore T (0,0;0):-(0)=—O((a/
A) ll3)

Bearing the latter remark in mind, we find that the
eA'ective action is, to a very good approximation, given
by

2+2
S[y*,y] = dt dxy*(x, t) ih +

Bt 2m

z'+' ooo—S'+'(0;t) — ' '
1y(x, t)1' ~y(x, t), (6a)

S'+'(0;t) =2nT'+'(0, 0;0) —2[T'+'(0, 0;0)]' ~ N(p)N(p')d " 2 '

(2x)3 (2x)3
1 —cos(hp p't/m)

[ (0) ( +
h 'p. p'/m

(6b)
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FIG. 1. The Keldysh contour in the complex time plane.

where S + (0;t) corresponds to a local approximation of
the retarded self-energy. Although this is not justified at
this point, it can be shown a posteriori that the correc-
tions due to memory eA'ects are O((naA ) ) and negligi-
ble, making the assumption self-consistent. Further-
more, the imaginary part of the self-energy is not includ-
ed, since it is in general a factor of O(naA ) smaller
than the real part. Because of the form of the action,
defining a time-dependent Landau-Ginzburg theory, we
conclude that we are dealing with a second-order phase
transition and a critical point if S (0;~) =0. Looking
at the divergence of the second term in Eq. (6b) as ( t 1

we can express the critical temperature T, =To[1
+0 ((a /Ao) t ) ] in terms of the critical temperature To

of an ideal Bose gas. Note that in contrast with He the
critical temperature is enhanced. The difference is that
in liquid helium the renormalized mass is larger than the
bare one, resulting in a lower critical temperature,
whereas for a weakly interacting gas this effect is essen-
tially absent.

In discussing the physical content of the field theory
given by the action S[p*,p] we have to distinguish be-
tween two cases. If 5 + )0 the ground state of the sys-
tem is p(x, t) =0 and we are in the symmetric state. The
action describes a gas of particles interacting via the
pseudopotential V(x —x') =T + (0,0;0)6(x —x'). The
dispersion is slightly changed due to the presence of the
S +

~p(x, t)~ term, but for a thermal particle the
correction is O(naA ) and unimportant. This is indeed a
valid description of a weakly interacting Bose gas above
the critical temperature. ' More interesting is the case
St+) &0, when the U(1) gauge symmetry is spontane-
ously broken. To find the particle content of the theory
we transform to the new variables p(x, t) and g(x, t) cor-
responding to the (squared) magnitude and the phase of
p(x, t), respectively. The action becomes

ap(x, t) &, &
Z'+'(0, 0;0)S[p,g] = dt 'dx hg(x, t) ' —S'+'(0;t)p(x, t) — ' ' p'(x, t)

p(x&t) [ ( )] p 6 [Vp(x t)]
2m

'
8m p(x t) (7)

Replacing p(x, t) by po(t)+bp(x, t) in the last two interaction terms, with po(t) having the physical significance of the
condensate density, and neglecting terms of O(h' p/po) which are expected to be small, ' we arrive at a quadratic action.
Going over to momentum space and integrating out the phase field g(x, t) by taking only tree diagrams [cf. Eq. (4)]
into account, we find the equation of motion of the condensate fraction, p(0, t) =po(t)V= —S + (0;t)V/T (0,0;0),
and the effective Lagrangian density

&(p, 8p/r)t) =—g1 m
V k~o 2k'po(t)

Bp(k, t) 6 k 1 + T + (0,0;0)
"dt 8m pp(t) 2

(8)

From the equations of motion, in the case of constant po,
we obtain the famous Bogoliubov dispersion relation:'
h ai(k) =e(k) [1+2paT + /e(k) ] ', which shows that
X(p, 8p/Bt) describes a gas of noninteracting (Bogo-
liubov) quasiparticles, as we expect for a Bose gas below
the critical temperature. Note that the terms of
O(8p/po), which we neglected so far, describe the in-
teractions between the quasiparticles and are indeed of
no importance in general. If necessary for a specific
problem they can be treated in perturbation theory.
Furthermore, Eq. (8) oA'ers the possibility of studying
the time evolution of the dispersion relation and there-
fore the appearance of superAuidity.

Most important for the purpose of this Letter is the
expression for po. It shows that the time scale for the
formation of a condensate is equal to the time scale as-
sociated with the change of S + (0;t) Acareful exam. -
ination of Eq. (6b) gives a condensation time of
O((a/A, ) t A/k~(T, —T)), which is O(A/kti T, ) except
in a small critical region where (T, —T)/T, « (a/A, )
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As an illustration, we calculate S + (0;t) for three den-
sities of the gas. For densities n «n„S + (0;t) is essen-
tially constant and equal to 2nT + (0,0;0), implying a
correlation length g of O(l/v'na ). This is the density re-
gime where a Boltzmann equation is valid. However, if
n n, we see in Fig. 2 clearly a buildup of correlations in
the gas as time evolves. For n=n„( diverges in the
time t ~ and we are at the critical point. Increasing
the density beyond n, we actually see the phase transi-
tion taking place as S + (0;t) becomes negative.

In conclusion, we have shown that a dilute Bose gas
will, under suitable experimental conditions, show a
second-order phase transition and form a condensate in a
finite time of O(A/ktiT, ) =O(m/hn t ). Because a
typical time between collisions is O(mA/ii'dna ), their ra-
tio is O(na A) and very small compared to 1, implying
that the condensation will take place well within the life-
time of the sample. At first sight it is surprising that the
condensation time is insensitive to the interaction. Phys-
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FIG. 2. The time evolution of the condensate fraction for
three densities of the Bose gas. See text for more details.

ically this is due to a coherent, in contrast to incoherent,
population of the zero-momentum state. Subsequently,
the buildup of coherence being determined by the Ham-
iltonian and for a weakly interacting gas by the kinetic
energy, the typical time scale for the appearance of the
condensate is set by the temperature of the gas. Of
course, the experimental realization of the required den-
sities and temperatures is still a difficult task and poses
an important challenge for the future.
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