
VOLUME 66, NUMBER 24 PHYSICAL REVIEW LETTERS 17 JUNE 1991

Speed of Propagation of Classical Waves in Strongly Scattering Media
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We present results of optical experiments which demonstrate that in a strongly scattering medium
containing resonant scatterers the velocity for electromagnetic energy may diIt'er by an order of magni-
tude from the phase velocity. We derive a microscopic theory that yields an expression for this velocity.
Discrepancies are removed, and excellent agreement is found between experiment and theory.
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The interest in multiple scattering of waves has under-
gone a tremendous revival. ' New investigations of mul-
tiple scattering of classical waves were undertaken in

both the visible and microwave regions of the elec-
tromagnetic spectrum and in acoustic ' systems, under
conditions where multiple scattering is dominant and
where dift'usion theory may be used as a starting point.
Crucial parameters are the diffusion coefficient D and
the mean free path I. In steady-state transport measure-
ments the outcome is determined by the transport mean
free path, whereas the diffusion coefficient is obtained
from dynamic experiments. The two parameters are re-
lated according to D = 3- v~l, with U~ a transport veloci-

ty. It is our aim to point out that the velocity that ap-
pears in the diffusion constant is neither the phase veloci-

ty nor the group velocity but instead a transport velocity.
The phase velocity, either found from volume-fraction
arguments, or obtained from more sophisticated coherent
potential approximations, ' has frequently been used as
the velocity entering in the diffusion constant.

The group velocity, vg =dF. (p)/dp, on the other hand,
describes the propagation of the coherent beam. In
transparent dispersive media multiple scattering is ab-
sent, and energy is transported by the coherent wave. In
the presence of multiple scattering the scattered waves
also carry energy and their propagation is not contained
in the group velocity. Especially near resonance, where
the scattering contribution becomes large, the group ve-

locity fails to describe transport of energy. ' Indeed the
group velocity can become much larger than the vacuum
speed of light. We will show, both experimentally and
theoretically, that the actual velocity, which we shall
refer to as transport velocity vz, can be very much lower
than the phase velocity in the case of resonant scattering.

Studying optical transport in strongly scattering
media, we came across a persistent discrepancy between
l as found from steady-state measurements (e.g. , total
transmission) and D as found from dynamic experiments
(e.g. , time-resolved transmission of a pulse). For the two
measured quantities to agree, a very low value had to be
assumed for the transport velocity. An independent

measurement of the transport mean free time was then
undertaken, and showed that the transport velocity was
indeed ver& low. The discrepancy was thus removed.

Our findings seem to have important consequences:
The outcome of theories in which diffusion constants are
calculated on the basis of the phase velocity should be
reconsidered. Likewise, they show that great care is
needed in inferring a mean free path from dynamic mea-
surements. Previously reported exceptionally small dif-
fusion constants can be attributed to small transport ve-

locities rather than to small mean free paths. When no
resonance scattering is occurring the difference between
the two velocities will become unimportant.

Samples of finely divided Ti02 in air were prepared on
the basis of commercial rutile pigment with size distribu-
tion centered around d =220 nm.

The transport mean free path for visible light in the
samples was determined by two different static tech-
niques: Cones of enhanced backscattering were recorded
using previously described' methods and the total
transmission was monitored. The transport mean free
path I was calculated from the full width at half max-
imum' and from the apex angle of the triangular cusp"
at the top of the cones of enhanced backscattering, yield-
ing 0.66+ 0.03 and 0.58 ~ 0.04 pm, respectively, at
wavelength k =633 nm. Alternatively, the transport
mean free path was determined from transmission exper-
iments. For slabs of thickness L, with l «L «l,b„where
l.,b, =(l;„l/3) ' is the absorption length, the total trans-
mission is given by T=yl/(L+2zol). We estimated
y= 2z0= 2. 1 on the basis of computer simulations,
diA'ering somewhat from the values for scalar isotropic
scattering. The total transmission T was measured as a
function of the slab thickness at X=633 nm: Samples,
mounted in the entrance port of an integrating sphere,
were illuminated from the outside and the resulting in-
tensities inside the sphere were compared to the intensity
in the absence of a sample. The results are plotted in

Fig. 1. From the slope of this plot we find l=0.57
~0.05 pm, in agreement with the enhanced-backscat-
tering data. The absorption length in our samples was
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determined to be about 80 pm at X =633 nm and does
not need to be taken into account. The diffusion con-
stant D and the transport mean free time i were ob-
tained from dynamical speckle measurements: Using a
dye laser as a source, we studied the intensity correlation
function (BI BI„+&„) within a single coherence area
(speckle spot) in the scattered intensity pattern over the
wavelength range between 585 and 630 nm. This object
measures the distribution of photon Aight times in the
sample. ' In a backscattering geometry and at some
constant value of I C&L, the distribution of path lengths is
fixed, and hence the decay of the correlation as a func-
tion of Aco will depend on the mean free time z only. In
a transmission geometry, on the other hand, the path-
length distribution depends on the proportion L/l and the
decay will be determined by D and L.

Following the method by which Genack and Drake'
calculated the correlation in transmission speckle, we ob-
tained for the normalized correlation in reAection and
transmission speckle
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I IG. 1. Reciprocal of the total transmission through slabs of
36 vol% Ti02 in air, as a function of slab thickness I.. The
straight line is a fit with diAusion theory and yields 1=0.57
+ 0.05 pm.
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respectively, with 8=2zo+L/l and y =J6Ator. From
Eq. (1) we expect that for large Aco the correlation in the
backscattered intensity will decay as exp[ —(I+zo)
x J6hcor] Figure 2 i.s a test for this behavior for an
L =78 pm sample. The constant slope of the plot con-
firms the expected type of decay. From a series of deter-
minations using samples with L values ranging from 8 to
200 pm we found r to be 12.3 ~ 2. 1 fs.

In transmission, the correlation is a function of By
=(2hcoL /D)'t . In Fig. 3 the experimental width' at
half maximum of the correlation function is plotted
versus L. From Fig. 3 we find D = 11.7 ~ 1 m s

Combining ~ and D as found from the dynamical experi-
ments, it follows from l =43zD that 0.57 pm ~ l

~ 0.74 pm, in agreement with the value of l=0.60 pm
found from the static experiments.

Now that we know our set of experimentally found pa-
rameters is consistent, we may use it to calculate the
transport velocity for electromagnetic waves vE. We find
1/r = UE = (5 ~ 1)x 10 m s

We will now present an outline of a derivation of the
expression for the transport velocity in terms of micro-
scopic properties of the scatterers. We start with the
scalar wave equation

e(x), —& e(x, t) =0,t'
in which a=1/c is the dielectric constant. The scalar
correlation function (+(x~, t~)+*(xz, tq)), averaged over
disorder, can be shown to satisfy the following general-
ized Boltzmann equation:

+2q p+r(E+, p+) —z(E,p ) ~,(q, ~lE) =~G(q, ~lE, p) I+ZU&t (q, ~lE)~'v(q, ~lE)
cp P

Here @z represents (+(x~, t~)+*(xz, t2)) Laplace trans-
formed with respect to time and Fourier transformed
with respect to position; E and p are the internal oscilla-
tions of the wave packet. Furthermore Z is the mass
operator, U the irreducible vertex, h, 6 the difference be-
tween retarded and advanced Green functions G(E+,
p+) —G(E,p ), and E —=E~ is+ —,

'
co, p

——=p—
~

2 q. The empty-space speed of light is co.
In order to calculate the diftusion coefficient we re-

quire the solution in the Kubo limit: q, co 0. We will
solve Eq. (4) to lowest order of the density ("Boltzmann

limit" ): AG is taken completely "on shell, " and Z and U
are approximated by

Z(E —,p) =nt (E —), (5)

U (q, colE) =nt + +(E+)t (E ), (—6)-

with n the density, and t the T matrix of one scatterer.
Next a careful expansion for Z and U in terms of m and
q is employed. With c~ the phase velocity, we let

e, (q, ~lE) —=~(E'/c,' —p')@;(q,~lE) .
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is general expression to a semiclassical scattering mod-
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tion of the on-shell T matrix of M'o a ie scatterer and ap-
plication of the orthogonality property of the different
partial waves yields

J(q, )ro= vE p@j(q, rolE ) .dp .-

The yet unknown velocity vE is the speed at which ener-

gy transport takes place and is fixed
and Jtan J to obey an equation of continuity. After summing
Eq. (4) over angles p, we obtain

vE CO 31+— g (2 +1) +
&o c~2 4 x', =i dx dx

(12)

iro=(q, ro) iq J(q, ro—) =const,

provided

(1O)

Cp
2

vE — 1 fl
cp

, Retry(P)+n t(n) )dp dp n

1(n) and (n)) denote the scattered intensity and the
phase shift in the direction 0 It '

is very important to
note that the second and third terms in E . (1 )
in the ca

s in q. 1 j cancel
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where f is the volume fraction of the Mie spheres,
x =aE/cp is the size parameter, and a„and P„represent
the (Van de Hulst) phase shifts of the individual partial
waves. It is easily shown that the Boltzmann diAusion
constant becomes D = —, vEl, with l =l„/(1 —(cosO)„),
where l„represents the scattering mean free path. In
Fig. 4 we have plotted for a volume fraction f=0.36 the
values for v~ as a function of the size parameter x, as
well as the outcome of a heuristic model based on the
diA'erence between energy density inside and outside a
scatterer. This simple model turns out to reproduce the
results of Eq. (12) very well. In this model one estimates
vz =co/tf(W —1)+ 1]. Here W is the energy density
within the scattering particles relative to the surrounding
air and is much larger than unity on a resonance. '

The size parameters of our samples lie within x =0.8
and 2.5. Averaging over this range of size parameters
leads to v~/co=0. 18, in good agreement with the experi-
mental value: v~/co =0.16 ~ 0.03.
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