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We study the evolution of the nonlinear O(/V) ¢ model in an expanding universe in the large-N ap-
proximation, where one can solve exactly for the scaling field distribution, incorporating the full non-
linear dynamics. This provides a valuable analytic approximation for theories of cosmic global mono-
poles (N =3), global texture (N=4), and “nontopological texture” (N >4). The analytic results are
compared with those from numerical simulations, with good agreement. The probability distribution for
mass fluctuations in the linear regime is positively skewed, providing a distinctive test for the theory.

PACS number(s): 98.80.Cq, 11.10.Lm

The problem of the origin of structure in the Universe
remains an intriguing and unsolved one. One set of
theories is based on a simple physical idea: that the
Universe began in a hot, homogeneous state, which as it
cooled underwent a symmetry-breaking phase transi-
tion.! The resulting disordered field distribution, with or
without topological defects, enters a scaling solution, in
which it orders itself continually on the horizon scale. In
the process it generates density perturbations of constant
amplitude on each scale at horizon crossing at all times.
The earliest example of such a theory was that of cosmic
strings,? but more recently it was realized that the same
mechanism also operates whenever a non-Abelian global
symmetry is broken in the early Universe, generically
producing global texture.> Family symmetry schemes®
and a class of grand unified theories (GUT’s) invented to
solve the strong CP problem® provide concrete examples
of theories where this actually occurs. We have recently
devoted some effort to investigating this mechanism in
detail: through numerical simulations of texture evolu-
tion,® calculations of the early formation of galaxies and
quasars,’ large-scale simulations of the large-scale struc-
ture formed by texture,® and calculations of the anisotro-
py pattern produced by texture on the microwave sky.’

A simple set of theories with broken global symmetries
is provided by the “N-vector” models, where O(V) is
broken to O(N — 1) by an N-component real vector field.
For low N, these theories have topological defects. For
N=1 one has domain walls, N =2 global strings,? N=3
global monopoles,'o and N =4 global texture, an unsta-
ble topological defect.® At larger N, there are no topo-
logical defects, and the dynamics is simply that of non-
linearly coupled Goldstone boson modes (“nontopologi-
cal texture”). For all IV larger than 1, these theories are
potentially interesting theories for the origin of cosmic
structure. After the phase transition, at the GUT scale
for the theories of interest, the field ¢ is closely confined
in most of space to the vacuum manifold, ¢2 =¢§, where
¢o=mguTt. However, ¢ is free to wander around the
vacuum manifold, and these ‘“‘angular” variations in ¢
(the Goldstone modes) lead to an energy density which

scales with that of the Universe: p= (8;¢)%= ¢3/t>.
For V> 2, the dynamics of the Goldstone modes associ-
ated with the vacuum degeneracy is accurately de-
scribed® by the nonlinear sigma model (NLSM).'! For
N=1 or 2, most of the energy is localized in the defects
(domain walls or global strings), where ¢ departs from
the vacuum manifold, and the NLSM is not likely to be
an accurate description of the ordering dynamics.

Parallel to the work in cosmology on the generation of
large-scale structure from the ordering dynamics of non-
linear fields, considerable interest has developed in con-
densed matter physics in the phenomenon of *self-
organized criticality”: the ordering dynamics of systems
suddenly quenched below the critical temperature.'?
One of the principal analytic tools used here has been the
large-N approximation, developed by Mazenko and Zan-
netti,'> and Coniglio and Zannetti.'* In particular,
damped spin systems with a nonconserved order parame-
ter which are the nonrelativistic analogs of cosmic tex-
ture have been recently investigated both numerically
and analytically by Newman, Bray, and Moore. '*!®

In an expanding universe, the evolution of the NV-
component field ¢ in the NLSM approximation obeys®
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where 7 is conformal time, a=2{d1n[a(n)]/dlnn}, and
a(n) is the expansion factor. T is proportional to the
trace of the stress energy tensor for ¢. In a flat Fried-
mann universe, a(n) =n/nx + + (n/nx) %, where ns =@8n
X GPm,eql3) ~ 12 {efines the transition from radiation to
matter domination, and p,, ¢q is the density of matter at
equal matter/radiation density. a is a slowly varying
function which changes from 2 in the radiation era to 4
in the matter era.

We wish to solve (1) with initial conditions corre-
sponding to a physically reasonable ¢ field distribution at
some early time 7o, immediately after the symmetry-
breaking phase transition. We assume that we can rep-
resent ¢/¢o as a unit vector of random orientation in each

© 1991 The American Physical Society 3093



VOLUME 66, NUMBER 24

PHYSICAL REVIEW LETTERS

17 JUNE 1991

initial correlation volume. This means that for the long-
wavelength modes of interest, each Fourier mode of ¢ is
Gaussian distributed, with a white-noise power spectrum.
In addition, we must specify the initial velocities ¢(170).
The simplest assumption is that these too have a white-
noise power spectrum, although since initial velocities
redshift away rapidly, our results will hold for any
reasonable initial values of ¢ (7).

In the large-N approximation, one simply replaces
T(x,n) with its spatial average, 7(n). This may be un-
derstood as follows. For any given T (), (1) is linear, so
if ¢ begins Gaussian distributed, it remains so for all
times. With a Gaussian distribution for N degrees of
freedom, the probability distribution for ¢> becomes
more and more sharply peaked about ¢ at large N. In
particular, the fluctuations in any quadratic quantity like
¢> or T are proportional to 1/N, and may be consistently
ignored. But ignoring fluctuations amounts to replacing
T(x,n) by T(5), so the whole scheme is self-consistent.
To find the solution, one finds the general solution for ¢
for any T(n), calculates T(n) from its definition, and
obtains a self-consistency relations, which is then solved
for T(n).

In our case we can actually guess the form of the solu-
tion. If a is constant, then from dimensional considera-
tions the only time or length scale is 1, so we expect
T(n) =Toed/n?, with Ty a constant. Furthermore, rath-
er than calculating T(n7) one may simply use the condi-
tion {p2(n) =¢4. This actually guarantees that the cal-
culated value of T(n) equals Topd/n?, as may be seen
from (1) by using an integration by parts, and

(0D =05—(p ) =0—(§-¢)=—{$?.

We now solve (1) with T replaced by To¢4/n? in terms
of its Fourier modes (treating & as constant):

o(n,x) =Zk:¢k(n)e“‘"‘ ,

(1—a)/2
| JV(kT])
¢x(n) [ o ] kno)” #x(m0) , )]

vi=To+ : (1—a)?,
with 7o the initial time. Here we have used ¢x(no) =0,
setting the coefficient of the linearly independent Y,
mode to be vanishingly small for the long-wavelength
modes (kng< 1) of interest. Choosing any reasonable
initial magnitude for the initial velocity power spectrum

yields the same result.
Now the self-consistency condition reads

TRIE)) =;(¢k(n)¢_k(n)>
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for all time. Taking the initial power spectrum to be
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white noise, we can rewrite equation (3) as the product
of a dimensionless integral of kn, which we assume con-
verges, times 7%*7¢72_ For the left-hand side to be
time independent, we require

v=1+4+a/2. 4)
But from (2) we now have

T0=%+ a (5)

ol

giving T9=3.75 in the radiation era and T(=6.75 in the
matter era. We may now check that the integral in Eq.
(3) does indeed converge, and note that it is dominated
by horizon-scale modes at all times (kn==1). This tells
us that the nonlinearity is mainly in horizon-wavelength
modes: Modes well inside the horizon are just linear
fluctuations. We expect the scaling solution (5) to be
stable, and that small deviations of 7(n) relax to zero in
a few expansion times.

We now compute the density and pressure of the sca-
lar field from 7' (7). For scalar fields, we have

p=[+¢’+1(V-9)21a2 P=[1¢>—L(V-9)2a2,

and thus T=(p—3P)a?. We can obtain p and P sepa-
rately by using stress energy conservation (which the
solution respects):

(a) =2 (p—3P)a*=2Ta2. 6)
a a

Integrating Eq. (6) in the matter era yields p=6.75/
a’n?, but in the radiation era we find p=3.75In(y/
TIO)/GZTIZ, a reflection of the buildup of linear Goldstone
modes inside the horizon.® Note that at large N, the
mean density and pressure are independent of V. We
have compared these predictions with the results of nu-
merical simulations described in Ref. 6, and find agree-
ment to within approximately 20% for N from 4 to 10.'”

For the formation of structure, it is more important to
calculate the fluctuations in the density and pressure,
since these are responsible for perturbing the matter dis-
tribution. In the large-/V approximation, all quantities
are specified from the two-point correlation function,

ab
(OO =082 Siceico®u (1)

32 ,(kn)
—n"” .
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where v is given in (4).

In particular we obtain the power spectrum
‘1’_‘% 37 (kn)
N k>
We have compared this prediction with numerical simu-
lations of the evolution of the ¢ field. Starting with

Pk,n) =(g(n)o%x(n)) = ®)
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FIG. 1. The power spectrum of the scalar field distribution
calculated in a numerical simulation is compared to the analyt-
ic prediction, Eq. (8). In the numerical simulation, we evolve
an N=10 model in a radiation-dominated Universe in a 60°
box using the techniques described in Refs. 6 and 18. At five
different times, we compute the power spectrum convolved with
a 3D Parzen window. The labels identify the conformal time n
in grid units (Ref. 6). Since we are plotting the spectrum at
different times, different snapshots span different ranges of k7.
The heavy solid line shows the theoretical spectrum convolved
with the appropriate window function. There are no adjustable
parameters in either the theoretical model or in the simulation.

white-noise initial conditions for the field, we evolve Eq.
(1) using the numerical techniques described in Refs. 6
and 18. In Figs. 1 and 2, we show the theoretical power
spectra and numerical results for the radiation and
matter eras. The simulations scale beautifully, and
agree well with the analytic predictions. This increases
our confidence in both the numerical simulations and in
the large-/V approximation. We have repeated the com-
parison for smaller values of /V and found that the agree-
ment is still good down to N =4 during both the matter
and radiation epochs.

Apart from checking simulations, the scaling solution

g g
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where we define

Ik =fdﬂ'Gl+k(Tl')d>k'+1(n')d>k’—k(n') ,
and similarly for k,/,m#=0,

Sp > -8 22
P N (4rnGeog)

k 1

ANEANET

10 gy R e et

T

107\0

107"

LALLLL R e L R L L SR RN SR RLIL R B LR
vl vl vl el el i coned ol ol sl il ol e

- 21

1072

1 10 100
9
FIG. 2. The same as Fig. 1, but in a matter-dominated
Universe.

is useful for calculating quantities of direct cosmological
significance: the power spectrum for density fluctuations
induced in the matter, the microwave and gravity wave
backgrounds, and so on. The calculation of the matter
perturbations requires that we extend the scaling solu-
tion through the radiation-matter transition. A fairly
accurate “adiabatic” solution is obtained by simply re-
placing the constant a in (4) and (7) by 2dIna/dlnn
throughout. As is seen from (7) this ensures that (2
=¢¢ at all times, but the mode functions ¢, (1) do not
satisfy the equation of motion exactly. The neglected
terms are, however, of order dlna/dlnn, which has a
maximal value of 1/(1++/2)2=1/6 near the transition,
so it is a reasonable approximation to neglect them.

The source for perturbations in nonrelativistic matter
is S(x)=87G¢>(x)a"2® and the coefficient of the
growing mode in the linear matter perturbations is given
by (6p/p)E=Sdn'Gi(n')Sk(n') with G,(n) the Green’s
function for the mode k. For cold dark matter, G is in-
dependent of k, and is given in Ref. 8. For hot dark
matter it depends on k, and must be calculated numeri-
cally.'® We find, for k,/=0,

Tox(k')?, )

d’k'
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The mass fluctuation SM/M on a given scale is directly
related to (8p/p)x, and we see that the rms value of
SM /M scales as G¢§/~/N. Thus for larger N, one re-
quires a larger value of ¢o to produce the same mass fluc-
tuation. The skewness ((SM/M)>/((sM/M)**?
N ~'2 and the kurtosis ((6M/M)*/(5M/M)?)?
o« 3(1+4/N), both approaching the Gaussian value at
large N. The power spectrum and skewness may be ob-
tained numerically from (9) and (10), which will provide
a valuable complement to the direct numerical evolution
of texture done so far.'” The analytic solution also en-
ables one to calculate the microwave anisotropy and
gravity wave backgrounds produced in these theories, ig-
noring the direct effect of the defects for N=3 or 4.° It
should also be possible to calculate the leading large-V
corrections to the quantities discussed above as was done
in Ref. 16. It would be interesting to extend the methods
described here to the case where cosmic texture is pro-
duced during a period of inflation.

The generation of structure through the nonlinear or-
dering dynamics of Goldstone boson fields provides a
promising alternative to the popular Gaussian theories of
density fluctuations. The feature of positive skewness in
the probability distribution is particularly interesting in
the light of the recent detection of positive skewness in
the galaxy counts in cells in recent very-large-scale sur-
veys.?? To end on an optimistic note, with more detailed
calculations along the lines reported here, one might be
able to determine N from the observations.
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