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Nonequilibrlum Potentials for Dynamical Systems with Fractal Attractors or Repellers
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The concept of a nonequilibrium potential is applied to dynamical systems with fractal attractors or
repellers. In particular, we study the case of the Feigenbaum attractor in one-dimensional maps and the
case of hyperbolic strange attractors or repellers in two-dimensional maps. The potential-height distri-
bution of the latter is shown to exhibit multifractal features; that of the Feigenbaum attractor is charac-
terized by a single number, the universal exponent for noisy period-doubling bifurcations.

PACS numbers: 05.45.+b, 02.50.+s, 05.40.+j, 05.70.Ln

The concept of a nonequilibrium potential for a dy-
namical system arises in two diA'erent ways.

(i) Let a dynamical system be described by a set of
differential equations q'=K'(q) and let some positive-
definite "transport matrix" Q'"(q) be given. A non-
equilibrium potential C(q) may be introduced as a
continuous but not necessarily continuously diA'erentia-
ble solution of K'(q) =r'(q) —

—,
' Q'"(q)8„@(q) and

r'(q)8, @(q)=0 with the boundary condition that
should be minimal in attractors. The above conditions
combined determine nonequilibrium potentials locally
as solutions of a Hamilton- Jacobi equation, K'6,&
+ —,

' Q'"tl,@8„@=0, and @ decreases like b(q(t) )
= ——,

' Q'"8„@8„@.The dynamics q'=K'(q) may be
interpreted as relaxation in the potential @ subject to the
@-conserving part r'(q) of the drift K'(q). @ can
equivalently be determined by solving a set of Hamil-
tonian differential equations or by minimizing the action
integral

T
S[q] = —,

'

g dz Q,„(q)[q' —K'(q)] [q" —K"(q)]

where Q,„ is the matrix inverse of Q'". Among different
coexisting local minima of the action integral the
infimum is chosen.

(ii) Let the same dynamical system be perturbed by

Gaussian white noise in the sense of Ito, ' q'=K'(q)
+g"(q)g;(t), of infinitesimal intensity (g;(t)(I(0))
=rib;~(t) and with "diffusion" matrix P;g"(q)g"'(q)
=Q'"(q), and ask for the probability density W„(q) in

steady state, provided it exists, and the mean first exit
time (z„) out of a basin 6 with boundary t)6 of an at-
tractor A. Asymptotically, for q 0,

W'„(q) -exp[ —@(q)/ri], (z „)-exp[A@(q)/tl], (2)

where @(q) defined by (2) is also a solution of the
Hamiltonian-Jacobi equation with diffusion matrix Q ",
and AtIi:= mint@(y) —@(tt):a C A, y 6 66]. Nonequi-
librium potentials and first exit times in the weak-noise
limit have been computed for many systems both for
flows (cf., e.g. , Refs. 2-4 and references therein) and for
maps. A mathematical theory of the asymptotic esti-
mates (2) has been developed by Freidlin and Wentzeli'
for continuous time and transferred to the discrete case
in Ref. 11. However, the concept of nonequilibrium po-
tential has not been applied so far to systems with
strange invariant sets. This is the purpose of the present
paper.

In the following we shall use the definition provided by
Eq. (2) but shall employ the action integral (1) to deter-
mine N. Systems with fractal attractors are most easily
investigated by means of return maps. Thus we use Eqs.
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(1) and (2) in their corresponding versions for maps,
q„+1=f(q„)+dggg„. Here f is a map of an interval or
of some compact subset of the plane into itself. For sim-
plicity we shall assume Q to be a constant equal to 1.
((„) is a 6'-correlated sequence of bounded random vari-
ables with truncated Gaussian density ' in order to
render the perturbed noisy map well defined.

In analogy to Eq. (I) the action 5 of a sequence
(qi)o~, (1v is defined by
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FIG. 1. Nonequilibrium potential of the quadratic map in

the Feigenbaum case (attractor marked by vertical dashes),
obtained as lower envelope of the action of minimal sequences
starting with q0=0 and pl =e, where e varies from 3 x 10 to
0.27.

j=0

Let V, (y) be its minimal values for fixed N and given
initial and final points qo=x, q~ =y. In analogy to
Hamilton s equations fulfilled by the minimizing path to
the action (1) in continuous-time cases, one finds for
maps that a minimizing sequence (q„)o(„(g satisfies
the equations q„+i =f(q„)+p„+i, p„+i p„/f'(q„),
where f'(q„) AO is assumed, and where qo =x and po is

to be chosen to ensure qiv =y (cf. Refs. 6-9 and 13).
The infimal action from x to y is defined by V, (y)
:=i nf[V„( y):N) lj. In systems with only one attrac-
tor A the nonequilibrium potential @(x), satisfying the
estimates (2) under certain conditions, is &(x) =V, (x)
with a E A. The Hamilton-3acobi equation for @ has
been derived in Ref. 5.

Let us now look at examples furnished by the family
of quadratic maps of the interval, f„(x)=1 —px with

0 (p ~ 2. The attractor is then either a periodic orbit, a
chaotic interval (strange attractor), or an "attracting"
Cantor set. The latter type occurs, for instance, for
p =p, the Feigenbaum accumulation point (see, e.g. ,

Ref. 14). The nonequilibrium potential for this case is
shown in Fig. 1. It vanishes on the attracting Cantor set
and has maxima V" on all unstable periodic orbits of
length 2" ' inside the gaps of the Cantor set. The
heights of the potential maxima depend only on the
length of the unstable periodic orbit and not on the gap

size. Traditionally (see Refs. 14 and 15), the universal
noise scaling behavior for the Feigenbaum attractor is
investigated by linearization in the noise term of the re-
normalized iterated noisy map, which leads to the detec-
tion of the noise scaling constant ~=6.619. . . . That
procedure allows only indirect conclusions on the observ-
able steady-state distribution. In contrast, the asymptot-
ic scaling properties of the potential are directly connect-
ed with those of the steady-state distribution by Eq.
(2). ' The most conspicuous property is the scaling law
for the maxima V ":

lim (1/n) lnV(" = —21nir.
n

(3)

Heuristically, the relation of (3) to the above-mentioned
results on the iterated noisy map may be seen as follows:
By the period-doubling property the potential V ' im-
plies a potential V " ' —a V" in the next gap (the
tilde indicates that this potential belongs to the two-
times-iterated map, for which the noise amplitude has
grown by a factor a 'K), and V "+' —a ic V "+'
—K V(" . A proof of (3), connecting the scaling of the
potential maxima with the free energy of the Feigen-
baum attractor, ' will be given in a separate publica-
tion. ' This approach of nonequilibrium potentials,
which can also be formulated as a renormalization-group
theory of minimizing paths, leads to an alternate and
more general derivation of the universal results on noise
scaling by uncovering directly the universal properties of
the underlying steady-state distribution.

In the periodic windows a repelling Cantor set may
coexist with the attracting periodic orbit. On this repel-
ler the potential is constant. The potential must even
have the same value on a11 gaps of the Cantor set, except
those containing the attracting periodic orbit: The po-
tential in the gaps of the Cantor set is larger than or
equal to its value on the repeller because it can be shown
that the action of any sequence from the attractor to
points in the gaps not containing the attractor can be
lowered by inserting into the sequence points closer to
the repeller; on the other hand, the potential in the gaps
is smaller than or equal to its value on the repeller, be-
cause any point within a gap can be reached via some or-
bit of the deterministic map starting arbitrarily close to
the repeller (namely, in a sufficiently small gap).

Let us turn now to hyperbolic strange sets generated
by two-dimensional dissipative maps as strange attrac-
tors or repellers. ' Because of hyperbolicity, stable and
unstable directions are defined everywhere. The strange
attractor is the closure of the unstable manifolds of some
periodic points. Therefore, the potential is constant on
these unstable manifolds. A strange repeller is a Cantor
set along both the unstable and the stable directions.
Nevertheless, as in the case of one-dimensional maps, the
nonequilibrium potential is constant along the unstable
manifold within the repelling Cantor set. On the other
hand, for both strange attractors and repellers, the non-
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The coefficient Gi" (u) contains the directional deriva-
tives of the map in the stable direction at the points of
the minimizing sequence. Let I and M be the
minimum and maximum, respectively, of the square of
these derivatives. Then, independent of n, j, and u,
1
—&~(G(")(u) ~1 —m . It follows that the poten-

tial maximum Vj" in the gap j at the nth leve1 scales as
the square (li" ) of the size of the gap along the stable
direction. This size scales as the width of the branch
containing the gap at the previous level n —l. It is
known from the periodic-orbit theory of chaos (see, e.g. ,
Ref. 19) that the width of branch j at level n can be es-
timated as the second eigenvalue exp(Xq~n) & 1 of the
unique unstable n-cycle with a point in this branch.
Therefore, li" —exp[X2i(n —1)],and for n

Vi" —(l)~" ) —exp( —2lk21 ln) . (s)

As a consequence, the last level n* which can be com-
pletely resolved at noise intensity g is approximately
n*-ln(I/tl)/2I&21-. ,

Relation (5) implies that the multifractal scaling of
the l~" can be transferred to corresponding scalings of
the potential maxima V~" . For example, for n large, the
number N, (Xq) of n-cycles with a given X2 increases ex-
ponentially like N, (kq) —exp [ng2(X2)]. Hence, the
number Ng (y) of gaps with sizes scaling as l
—exp( —yn) and the number N, , (y) of potential maxi-
ma V scaling as V—exp( —2yn) both increase as
Ng(y) —N, , (y) —exp[ng(y)], where g(y) is the mul-
tifractal spectrum ' for the potential-height distribution.
Since N, ( —y) —N, , (y), we obtain g(y) =gq( —y), i.e.,
the height distribution is completely defined by the spec-
trum of the second local Lyapunov exponent. Converse-
ly, by measuring the potential, one obtains information
about the distribution of the second Lyapunov exponents
which are di%cult to access otherwise.

For maps with constant Jacobian J, the function g(y)
can be connected with other observables too. Here we
give the result for chaotic attractors only. Writing the

equilibrium potential is a rapidly varying function in the
stable direction and increases locally as one moves along
this direction away from the strange set into its gaps.
Consider the n-fold (n))1) image of some region con-
taining the strange set. It consists of branches lying
along the unstable direction which provides an nth ap-
proximant to the unstable manifolds, and of gaps be-
tween these branches. Let &i" (s, u) be the potential in
the jth gap at a distance s along the stable direction
from the nearest branch of the unstable manifold and u a
coordinate on the latter. The nonequilibrium potential,
determined as the infimum over all paths from the at-
tractor to a given point, is, in general, a nonlocal quanti-
ty. However, for large n, i.e., in small gaps, the potential
increases quadratically with s:

g (n) i G(n)( ) 2

10-8
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FIG. 2. Cross section through the nonequilibrium potential
of the baker's map (r|= —,', rq = —,

' ) in the x direction.

total generalized dimension as Dq =1+Dq, the mul-
tifractal spectrum ' f2(a2) of the partial dimension Dq
can be expressed as f2(a2) =g(y)/y, with aq= I+InlJl/
y. The dynamical entropies Kq are found to be Eq
=(Hq+qlnlJl)/(q —1), where Hq denotes the Legen-
dre transform of g(y).

%e emphasize the sharp contrast to the Feigenbaum
attractor. The latter is not hyperbolic and not even a
real attractor because unstable periodic orbits exist even
in arbitrarily small gaps. These have a strong inAuence
on the potential maxima which no longer scale with the
gap size. Formally, the distribution is a monofractal: g
is defined in a single point y=lnrc, where g =ln2.

As an explicit example let us consider the strange at-
tractor generated by the dissipative baker's map:'
xn+1 ~lxn~ Jn+1 &p'n if 0 ~ g ~

2 ~ and xn+1
—rz(1 —x„), y„+) =1 —s(1 —y„) if —,

' (y ~ I, with

r1 q positive and r1+r2 & l. The case of a strange repel-
ler appears for s & 2. In the following we consider the
strange attractor and put s =2.

The gap sizes at the level n+ 1 are l„(";+') = (1
—ri —r2)r( r2 —e ""+' with 0~ m (n and
1 (i (Ng (y). Here y is obtained for large n as
y= —x lnr) —(1 —x)lnrq, where x =m/n, and the num-

ber N~(y) of gaps of a given length determined by x or y
is Ns(y) =(" ) —exp[ng(y)].

The nonequilibrium potential of the baker's map along
the stable x direction is shown in Fig. 2 for ri =

2 and
r2= —,'. Owing to piecewise linearity, Eq. (4) holds ex-

actly for all n The co.efficients G, " (u) are independent
of u and can be written down explicitly. The potential
maxima for gaps of the same length are not equal, but
diA'er at most by a factor (1 —rz)/(I —

r& ) = —,', which

does not inAuence the scaling behavior. Thus we can
conclude N, , ( y) —exp [ng (y) ].

Finally, in order to exhibit an application of the non-
equilibrium potential, let us consider a one-dimensional
map of the form shown in the upper part of Fig. 3, where
two attractors coexist and are separated by a strange re-
peller. How can the stability of the two attractors be
compared? As discussed above, the nonequilibrium po-
tential is constant on the interval embedding the strange
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(I)( x J

FIG. 3. A function f(x) with two stable fixed points
separated by a fractal repeller and its nonequilibrium potential
e(x ).

repeller as shown in the lower part of Fig. 3. The depths
of the potential wells surrounding the two attractors are
therefore determined relative to this constant level. In
this way the stability of the two attractors against small
stochastic perturbations without memory and with con-
stant intensity can be compared with each other in an
objective way. Clearly, there are applications for which
this measure of stability is more objective than, e.g. , the
one based on the relative size of the domains of attrac-
tion of the coexisting attractors.
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