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We study the time evolution of a superconductor, following a quench from the normal state, in two di-
mensions. For a type-I superconductor, quenched into a region where the normal state is metastable, the
normal-superconductor phase boundary exhibits a dynamical instability similar to, but not identical
with, that observed in solidification. In the case of a quench into the Meissner phase of a type-II super-
conductor, the average vortex spacing d as a function of time ¢ is found to exhibit a crossover from
d~1""?to d~Int, the crossover time being an increasing function of the Ginzburg-Landau parameter «.

PACS numbers: 74.40.+k, 05.70.Ln, 74.55.+h, 74.60.—w

The superconducting transition in metals occurs very
slowly, with equilibration times of as much as 30 min re-
ported in laboratory experiments.! Mendelssohn and
Pontius' were apparently the first to give a physical ex-
planation of this phenomenon, by pointing out that the
superconducting transition is accompanied by eddy cur-
rents which dampen the motion of the propagating phase
boundary between normal and superconducting regions,
and a quantitative theory was given by Pippard? and
Lifshitz.> Subsequent experiments by Faber*® are in
semiquantitative agreement with theoretical predictions
for the rate of phase propagation. This body of early
work was conducted on what are now called type-I su-
perconductors.

More recently, interest in the kinetics of phase transi-
tions per se has focused on the phenomenon of dynamic
scaling;® both experiment’ and computer simulation® for
the approach to equilibrium of, e.g., a binary alloy dur-
ing spinodal decomposition observe the development of a
spatial pattern characterized by a single time-dependent
length scale /. It is found that / varies in time ¢ as [ ~¢°,
with ¢ consistent with a value of +. Theoretical® and
computational '*!" studies on systems with a continuous
symmetry suggest that dynamical scaling occurs there
too, albeit with a different value for the scaling exponent
¢, although the possibility of multiscaling has not been
firmly excluded.

In this paper, we present preliminary results on the ki-
netics of the superconducting transition, for both type-I
and type-II superconductors. Our results apply to two-
dimensional superconductors with two-dimensional elec-
tromagnetism. Qualitative aspects of our results are ex-
pected to be valid in three dimensions. In type-I super-
conductors, the kinetics may proceed through two alter-
native bulk mechanisms, analogous to nucleation and
spinodal decomposition, depending upon whether the
external field H, is respectively above or below H.. "2
We demonstrate a similarity to the dynamics of a crystal
growing into its undercooled melt, and accordingly a
linear stability analysis predicts a dynamical instability

of a planar normal-superconducting (V-S) boundary, as
observed by Faber but attributed to surface effects.*>
This well-known instability'® is responsible for the ubi-
quitous dendritic patterns encountered in solidification.'*
The similarity is not complete, however, and there are
differences due to the presence of two length scales asso-
ciated with the V-S boundary—the correlation length &
and the electromagnetic penetration depth A.

We have studied the “spinodal” regime using two-
dimensional numerical simulations of the quench into the
Meissner phase of a type-1I superconductor at zero ex-
ternal field, and have monitored the time evolution of the
average intervortex separation d(¢) during vortex-anti-
vortex annihilation. In the case of a neutral superfluid,
our earlier work'! indicated that d ~¢'/2. This can be
interpreted as arising from overdamped vortex motion in
the intervortex potential as a function of separation r,
U(r)~Inr. In the case of the charged superfluid con-
sidered here, the intervortex potential is logarithmic for
r<X, but decays exponentially for r>A. Thus, we
might anticipate that at short times the dynamics is simi-
lar to that of the neutral superfluid, but at longer times,
when r~A, there should be a crossover to d ~Int. This
is indeed what we observe.

Equations of motion.— We begin by writing down the
time-dependent Ginzburg-Landau (TDGL) equations
that govern the dynamics of the superconducting order
parameter y(r,z) and the electromagnetic vector poten-
tial A(r,?):
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where e and m are the charge and mass, respectively, of
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the electron, ¢ is the speed of light in vacuum, o is the
normal-state conductivity, and ¥, a, and b are phenome-
nological constants, which can be estimated using the
BCS theory if desired.!> By assuming local charge neu-
trality '® and using a gauge in which the scalar potential
is zero, the above equations must be supplemented by the
constraint V- A =0."7

Linear stability of sharp N-S interface on type-I
superconductors.— Qualitative features of the dynamics
may be obtained by assuming the existence of a sharp
interface on the scale of A between the normal and su-
perconducting states, with the interface characteristics
on the scale of £ subsumed into the surface tension. The
validity of this assumption is discussed further below.
Consider a N-S interface moving in two dimensions into
the normal state with velocity v, along its normal n, in
an external magnetic field H, < H.. Taking the curl of
Eq. (2), we find that

3B
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in the normal state, where D =c?%/4rc and zero penetra-
tion of the magnetic field into the superconducting state
is assumed. Using the Maxwell equations at a moving
interface, (v,/c)B=nXE, and taking B perpendicular to
the plane of the system, we obtain

tyBys=—D(VB)-n, 4)

=DV?’B 3)

where B, is the magnetic field on the N-S boundary. In
early work?™* B,, was assumed to be the thermodynamic
critical field. However, this is only true for a planar in-
terface in thermodynamic equilibrium, and must be
modified for a curved N-S interface. Local mechanical
equilibrium near the interface requires the minimization
of total free energy at fixed temperature and total
volume: 6F = — P;6V* — P,6V"+ 6 0,;(n)dS =0, where
F, P, and V denote free energy, pressure, and volume, the
subscripts n, s, and ns indicate contributions from nor-
mal phase, superconducting phase, and N -S phase boun-
daries, respectively, and o, is the surface energy of the
N -S interface. In two dimensions, the variational calcu-
lation yields AP=P; — P, =[0,5(8) + 6, (8)1 %, where 0

is the angle between n and the reference direction in
space, and # is the curvature of the interface. A more
complicated form of this relation exists in three dimen-
sions. Equating the chemical potential of the two
phases we obtain the shift in field at coexistence due to
the curved interface: AH=B,,—H.=—4rAP/H,
which gives AH=—(4n/H.)(c,s+0n)#. The mod-
ified “Gibbs-Thomson” boundary condition is then '8

B, =H. 1—%(0,,5+0',',;)7{ —H.—do%]., (5)

where we have defined a capillary length do(0) = (o
+o,)/(H?/4r). For isotropic, extreme type-I super-
conductors, with a correlation length of &, it can be
shown'? that do =22¢&/3.

The analogy between Egs. (3), (4), and (5) and the
one-side model of dendritic solidification? implies that a
planar NV-S interface, advancing at a speed v, will be-
come linearly unstable'? on length scales greater than a
critical length L.=2r(doD/v)"?. A superconducting
core growing into a supercooled normal state will gen-
erate complex interface structures, as seen in our numer-
ical simulations. The instability only occurs in the plane
perpendicular to the external field direction: There is no
new linear instability arising from the vector character of
the magnetic field. The reverse process of flux penetra-
tion into a superconducting state, in a transverse field
H,> H,., is perfectly stable, and has been studied by
Faber and others.

The above analogy is incomplete because the assump-
tion of a sharp interface is not valid. Unstable vortex
structures on a scale of order £ can be generated in time-
dependent processes. In type-II superconductors, these
destroy the sharp interface, and even in weakly type-I
superconductors, this instability is present, and observed
in the “spinodal” regime of type-I superconductors in
both the time-dependent simulations of Frahm, Ullah,
and Dorsey?' (and discussed there in terms of phase slip-
page) and in our own simulations.

Time-dependent simulations.— After scaling r'=r/&,
H'=H/\2H., A'=A/N2H.A, t'=t/(4ncE?/c?), and
dropping primes, we rewrite Eq. (1) as

F%‘ﬁi =y(1—|y|?) +exp [ifA-dr]V2 [u/exp [—ifA'dr] } , (6)
%—? =V2A+% Im{w* exp [ifA-dr]V [u/exp [—ifA-dr] ] } , @)

where I'=y/(4rc&%a/c?) can be estimated using the BCS theory?? to be I' =[372mc?/28¢(3) A1 (ks T./Er)(1/c), and
k=A/E. Taking o=1puQ 'cm ™!, T./Er~1073, we find that I ~0.8. Therefore we choose I'=1 as a representative
value.

We have used an explicit finite-difference scheme to solve these equations on a two-dimensional square lattice, with
the order parameter defined on the nodes and the vector potential on the links:>*> The magnetic field is restricted to be
perpendicular to the plane of the superconductor. The system is surrounded by an insulator held in constant external
magnetic field H,. The boundary conditions on the sides of our sample are dy/dn =0 and A-n=0 which guarantee
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that no current flows out of the sample. The constraint
V- A =0 is imposed at each time step. Full details of our
simulations will be published elsewhere.

Phase propagation in a type-I superconductor.— We
have studied the dynamics of a stable normal phase in-
vading the superconducting phase, and the dynamics of a
superconducting phase growing into both the metastable
and unstable normal phase. A typical time sequence of
the unstable growth process, starting from random initial
conditions for the order parameter and H = H,, is shown
in Fig. 1. The similarity with spinodal decomposition is
apparent. In the case of a quench into the metastable
state, we find that seeds larger than the critical nucleus
do grow unstably, as the stability analysis suggests.

Type-1I superconductor at zero field — We have per-
formed simulations of the zero-field transition in type-II
superconductors, with a cell dynamic scheme (CDS)
used previously to study the approach to equilibrium of a
system with a complex order parameter (but no gauge
field)."" The CDS algorithm updated the order-param-
eter field equation (6), and we used an explicit algorithm
for the London equation (7). Periodic boundary condi-
tions enabled us to study the process of vortex annihila-
tion. The CDS algorithm coarse grains the system at the
scale of &, and so is suitable only for the type-II case.
The control parameter in these simulations, G, may be
related to x by measuring the correlation length in the
simulation: We find G = 1/2«.

We have monitored the average intervortex spacing as

FIG. 1. Time sequence of the growth of the Meissner phase
in a type-I superconductor, at zero temperature, with the field
quenched below the spinodal line H.>. The grey scale is a mea-
sure of field strength, with white indicating field-free regions.
The parameters are a lattice size of 60x60, H, =0.2, k=0.4.
Space and time discretization units are dt =0.03 and dx =0.7.
(a) t=800. (b) r=2800. (c) t=69600. (d) r=175600.

a function of time and G for a lattice of size 256 %256,
averaged over 30 initial conditions, and our results are
shown in Fig. 2. For G =0.02 we find that d ~¢°, with
an exponent close to ¢ =0.375. This is the same ex-
ponent found in the neutral case (G =0) in the same
time range'' and we expect that for this or lower values
of G we will recover ¢ ~0.5 at longer times.

For G in the range of 0.2-0.4, our simulations show
clear departures from power-law behavior, with d ~In¢,
as shown in Fig. 2. Even this slow dynamics may not be
the true asymptotic behavior, at least in two dimensions:
At very long times, the combination of the weak interac-
tion between vortices separated by distances large com-
pared to A and possible weak pinning effects from the
lattice can cause a freezing of the dynamics. Future
work will determine whether or not there is dynamical
scaling during the superconductor transition, as well as
examining the physically relevant cases of three-
dimensional electromagnetism with both two- and three-
dimensional superconductivity.

Our results question the identification of patterns in
the intermediate state of type-I superconductors as true
equilibrium structures. Furthermore, there is the in-
teresting possibility that the domain structures exhibit
dynamical scaling in the same way that has been predict-
ed for the domain structures in block copolymer melts.?*

(a)

1.6 1.8 20 2.2 24 2.6 2.8 30 3.2
Loglo( t)

FIG. 2. Intervortex spacing d for various values of G with
H.=0 on a lattice of size 256 x256. (a) logiod vs logiot, aver-
aged over 30 initial conditions, for G =0.02 (circles), 0.2
(squares), and 0.4 (triangles). For G =0.02, the solid line is a
fit by d == %, with ¢~0.38. (b) d vs logiot for G =0.3, aver-
aged over 60 initial conditions.
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We conclude by mentioning another possible implica-
tion of our results. Vortexlike defects in grand unified
theories are candidates for the seeds of galaxies in the
evolving Universe.?> In this scenario, the correlations
between vortices would be relevant to the observed corre-
lations of galaxies. Our results show that these correla-
tions may be sensitive to whether the vortices are defects
in a theory with local gauge symmetry (superconductor
case) or with only global gauge symmetry (neutral
superfluid case).
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