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Flux Dynamics and the Growth of the Superconducting Phase
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We present a detailed investigation of the growth of the superconducting phase in a magnetic field.
For type-I superconductors, the planar normal-superconductor interface is dynamically unstable. In the
nucleation regime this feature leads to interface motion similar to that found in the solid-liquid transi-
tion. In the spinodal regime the spinodal growth proceeds by a sequence of phase-slip processes, unique
to a system with a complex order parameter. In type-II superconductors, vortex absorption stabilizes a
planar interface, despite the negative surface tension.

PACS numbers: 74.55.+h, 05.70.Ln, 74.60.—w

Consider a rod of superconducting material with criti-
cal field H„in a magnetic field H & H, (directed along
the axis of the rod), so that the rod is in its normal
phase. ' If the field is now reduced to below H„the nor-
mal phase becomes thermodynamically unstable relative
to the superconducting phase. For a controlled growth
of the superconducting phase one may embed a small

piece of superconducting material (with H,' & H, ) in the
rod which then acts as a nucleating center due to the
proximity eA'ect. As the superconducting phase grows,
two possibilities arise. (i) Positive surface tension of the
superconductor-normal interface, i.e., a type-I supercon-
ductor, favors a smooth interface, which moves into the
normal phase, thereby expelling flux (Meissner effect).
This motion leads to dynamical instabilities and the asso-
ciated pattern-forming processes similar to those found
in solid-liquid systems. In addition, the complex nature
of the superconducting order parameter allows the super-
conducting phase to grow by phase slippage, leading to
islands of superconducting phase in a sea of magnetic
field. (ii) If the surface tension is negative, i.e., a type-II
superconductor, then one would expect the notion of a
well-defined interface to break down completely. We
find that on small length scales, this breakdown mani-
fests itself through the absorption of vortices (quantized
filaments of magnetic flux). Remarkably, on larger
length scales, this process stabilizes a planar interface.
In this Letter we shall discuss the growth of the super-
conducting phase in a magnetic field, noting the similari-
ties with the simpler solid-liquid system and emphasizing
the qualitative difI'erences. Our results are summarized
in Figs. 1-3.

Diffusion model. —Some insight into the dynamics of
flux expulsion may be gained from the simplified model
of Pippard and Lifshitz for a sharp superconducting-
normal interface. " In the normal region the dynamics is

given by a diAusion equation for the magnetic field

B =8(x,y )i (in conventional units),

B =DBV B,
t,

where the diffusion constant is Dtt =c /4tra„= 10 m

s with a„the normal conductivity (in the supercon-
ducting region 8=0). The interface is determined by
two boundary conditions. Ampere's law and Faraday's
law yield for the field B, at the interface

8,v„=—
Dtt n. (VB), , (2)

where v„is the velocity of the interface, n is the normal
directed out of the superconducting phase, and the
derivative is evaluated at the surface. Local thermo-
dynamic equilibrium at the interface gives

8, =H, (1 —dok), (3)

where do=a/(H, /4tt) is the capillary length with a the
surface tension, k is the curvature, and H, is the thermo-
dynamic critical field. The planar interface is dynami-

cally stable for the normal phase moving into the super-
conducting phase. However, when the superconducting
phase grows into the normal phase, the interface is

dynamically unstable to long-wavelength perturbations,
short-wavelength perturbations being stabilized by the
surface tension. On this level the problem of the growth
of the superconducting phase in a magnetic field resem-
bles the familiar diAusion-equation description of the
solid phase growing into a supercooled melt, the magnet-
ic field playing the role of the temperature.

Just as in the solid-liquid system, in a type-I supercon-
ductor there are two distinct dynamical regimes: (a) In
the spinodal regime, 0 & H, & H, 2, where H, 2 is the spi-
nodal field (and is equal to the upper critical field for a
type-II superconductor) and H, is the external field,
there is no free-energy barrier to nucleation of the super-
conducting phase and, therefore, arbitrarily small seeds
can grow. (b) In the nucleation regime, H, i (H, (H„
only seeds of radius larger than a given critical radius
can grow; smaller seeds collapse. Unfortunately, the
sharp-interface model is unable to describe type-I super-
conductors in the spinodal regime, or in the nucleation
regime with H, close to H„because it neglects the order
parameter entirely. In addition, the surface tension is

negative for a type-II superconductor, a situation which
has no analog in the solid-liquid system, and for which
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this model fails. Thus we shall now resort to the more
general Ginzburg-Landau description.

Ginzburg La-ndau model .T—o model nonequilibrium
phenomena we use the time-dependent Ginzburg-Landau
(TDGL) equations for the complex order parameter
'y(x, r ) and the magnetic vector potential A(x, t):

8 6F
y(x, r) =— (4)

where the dimensionless gauge-invariant free-energy
functional is' "
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FIG. 1. The magnetic field 8 in the x-y plane, for a type-I
superconductor in the nucleation regime, from Eqs. (4) and
(6). The lengths are in units of the penetration depth X(T),
time is in units of the order-parameter relaxation time r R, the
magnetic field is in units of J2H„and the grey scale ranges
from white (8 =0) to black (8 = H, ). The external magnetic
field is H, =0.4, x =0.3, and 2=0. I (see text). We begin with
a wedge-shaped perturbation on a planar superconducting-
normal interface. The interface velocity is proportional to the
field gradient, and the magnetic field is large in regions of neg-
ative curvature. These two features are expected on the basis
of the simple diAusion model.

+
I [(ix) 'V —A] yI'+ (Vx A)'] . (5)

The Ginzburg-Landau parameter K =X(T)/g(T), where
g(T) is the coherence length and X(T) is the penetration
length. ' Consideration of the surface energy of a planar
interface shows that for K & I/J2 ( & I/J2) we have a
type-I (-II) superconductor. ' Ampere's law (neglecting
displacement currents) leads to the equation of motion
for the gauge field: Vx(VxA) =(4x/c)J, where the to-
tal current J =J,+J„.In dimensionless units, the super-
current is J, =(I/x)lm(@*VS) —AIyI and the normal
current J„=RE(Ohm's law) with E= —8A/r)t Here .Z
is the dimensionless conductivity: In the Drude model,
X = kq T, r/h, where T, is the critical temperature and r
is the Drude relaxation time for the normal metal. Thus,

=J, —Vx(VxA) .A

In addition, we need to specify boundary conditions at
the sample-vacuum interface. (a) For the magnetic field
B=V&A, we require that the tangential component be
continuous. (b) For the order parameter, the natural
boundary condition is J.n =0, where J is the total
current. ' This condition is di%cult to impose numeri-
cally, so we adopt one of two simpler possibilities: zero
supercurrent flowing into the vacuum or zero order pa-
rameter at the boundary. The choice of boundary condi-
tions on the order parameter has no eA'ect on the growth
provided the superconducting region is several coherence
lengths away from the boundary. Finally, in order to
reduce boundary eITects we impose periodic boundary
conditions in the x direction. In our computations we re-
strict spatial variations to the x-y plane, thereby envisag-
ing a superconductor of infinite extent in the z direc-
tion. ' It is essential to put the gauge field A on the
links of the computational lattice, ' which is achieved by
introducing the link variables U"„=exp[—ix aA" (x)],
where a is the lattice constant and p =x,y (we suppress
the time argument). ' In the free energy we make the
replacements

[(ix) 't)„—A„(x)]y(x)

(i xa ) ' [U"y(x+ ap ) —y(x) ], (7)

[V x A(x) l,

l K
' [U"„U'„,„-(U"„,„-) ' (U'. ) ' —1], (8)

and solve the corresponding equations of motion using a
simple iterative scheme on lattices of size ranging from
100&100 to 200x200 sites.

Type Isupercond-uctors. —The growth of the super-
conducting phase leads to flux buildup in front of the in-
terface until the magnetic field reaches the critical value
H, . Further growth of the superconducting phase is
determined largely by the (diA'usive) expulsion of IIux
from the region in front of the interface. As mentioned
above (and verified explicitly by our computations) there
are two distinct regions in the H-x plane for type-I su-
perconductors. '

Nucleation regime. —We find that the interface moves
diA'usively only. ' Localized perturbations in a planar
interface of size less than the critical size p, collapse, '

while perturbations of size greater than p, grow faster
than the planar front. In regions of negative curvature,
growth of the order parameter is further inhibited by the
magnetic field becoming larger than H, . The result is a
bulbous superconducting front; see Fig. 1. Our numer-
ical results for the TDGL equations seem to confirm the
qualitative predictions of the simple diA'usion model '

provided H, is su%ciently less than H, . Eventually, all
the flux is expelled and the superconductor attains the
Meissner phase. The analogy to the solid-liquid system
suggests the possibility of dendritic growth of the super-
conductor, i.e., needlelike solutions growing with con-
stant velocity, in the presence of anisotropy. In addition
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to the lattice anisotropy, we introduce an explicit m-fold
anisotropy in the order-parameter relaxation rate. The
tip radius p&, ~ of the dendrite may be estimated from the
diff'usion model. On the lattice sizes accessible to us,
the lattice anisotropy alone has little eff'ect on the growth
characteristics, which suggests that p&, ~ is very large.
For the modified model with maximal anisotropy we ob-
tain a minimal tip radius of pt p 70 penetration lengths,
which is still a large fraction of our largest lattice. Nev-
ertheless, given that the diffusion model seems to be
qualitatively correct, we expect anisotropy to result in
dendritic patterns in the nucleation regime.

Spinodal regime At .—small times, the superconduct-
ing phase grows in the same manner as in the nucleation
regime, i.e., diffusively. However, in the spinodal regime
an interesting possibility arises. The order parameter
can leak through the Aux wall giving rise to a new seed
on the other side —see Fig. 2. This process is unique to a
system with a complex order parameter coupled to a
gauge field. If the amplitude of

iver is small over a given
distance, then it is possible for the phase p of the order
parameter to change by 2rr over the same distance. This
possibility —a phase slip —reduces the gradient term in
the free energy (5) (A A —Vp/x), allowing the order
parameter to grow again. This process repeats itself,
leading to growing islands of the superconducting phase,
with a web of trapped flux in between where the field at-
tains a value of H, . Eventually the enclosed flux moves
towards the boundary of the sample and is expelled.

Type-II superconductors. —We begin with a super-
conducting seed in a uniform magnetic field. In the flux-
lattice regime H, &H, ~, the interface moves with con-
stant velocity until the superconductor becomes unstable
to vortex absorption. At this point, the interface slows

down significantly and absorbs vortices —see Fig. 3—a
unique process for pattern-forming systems. The inter-
face continues to move at a constant velocity until once
more it becomes energetically favorable to absorb more
vortices. The vortices slowly form domains of a triangu-
lar flux lattice, separated by line defects. Including
thermal noise in our computations would tend to anneal
these defects. The absorption of vortices stabilizes the
planar interface on length scales greater than g(T) and
the characteristic time of this process is set by the
order-parameter relaxation time ~R. Hence, the growth
rate is insensitive to Z. As H, H, 2 the growth rate de-
creases simply because more vortices per unit area have
to be absorbed. At H, 2 the superconducting phase van-
ishes. For small external fields H, (H, ~, vortex absorp-
tion occurs due to Aux buildup in front of the interface
but at long times the vortices are pushed out of the sam-

ple, resulting in the expected equilibrium Meissner
phase.

We have presented a detailed study of the dynamics of
Aux expulsion in superconductors in a magnetic field. In
the nucleation regime type-I superconductors grow dif-
fusively at short times and may show dendritic growth on
larger scales; in the spinodal regime leakage of the order
parameter occurs, resulting in Aux trapping at intermedi-
ate times. Type-II superconductors are altogether more
exotic: The absorption of quantized vortices stabilizes
the superconductor-normal interface. We hope that
these results will encourage experimentalists to investi-
gate flux dynamics and pattern formation in supercon-
ductors.

We are grateful to N. Goldenfeld for helpful discus-
sions and for sending us unpublished results. We thank
Hank Thacker for detailed discussions on lattice gauge
theory, and D. Huse and C. Lobb for useful conversa-
tions. Using similar techniques Liu, Mondello, and Gol-
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FIG. 2. The magnetic field for a type-I superconductor in

the spinodal regime. The initial conditions and relevant pa-
rameters are the same as in Fig. 1 except that H, =0.2. There
is no lower critical size for seed nucleation so that the order pa-
rameter can leak through the flux wall via the mechanism of
phase slippage (see text), resulting in a daughter seed on the
other side of the wall. The daughter seed continues to grow
until once more the field at the interface increases to H„and
the process repeats.
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FIG. 3. The amplitude of the order parameter for a type-II
superconductor. Here K=20, H, =1.0, and 2=0.1, and the
grey scale ranges from white (~y~ =0) to black (~y~ = I); on
the scale shown, the magnetic field varies very little from H, .
%'e start with a superconducting seed at the center of the lat-
tice in a uniform magnetic field. It grows until vortex absorp-
tion becomes energetically favorable. The first two panels
show the absorption of a single vortex at the interface: The
vortex enters at a corner of the computational lattice. The
third panel shows (i) the efl'ect of the fourfold symmetry of the
lattice on the large-scale shape of the superconducting region,
and (ii) the stability [on lengths larger than X(T)] of a planar
interface.
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