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Transport through a Strongly Interacting Electron System:
Theory of Periodic Conductance Oscillations
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The conductance through a quantum dot is calculated via an Anderson model of a site weakly coupled
to ideal leads with an on-site Coulomb interaction. As the chemical potential is varied, peaks occur
periodically in the conductance whenever an electron is added to the site. The participation of multiple
electronic levels in each conductance peak explains the anomalous temperature dependence of peak
heights observed in recent narrow-channel experiments.

PACS nUmbers: 73.40.Gk, 72. 15.Qm, 73.20.Dx, 73.50.Bk

As electronic confinement in quantum-dot structures
approaches atomic dimensions, behavior characteristic of
atomic impurities has emerged in capacitance' and IR
(Ref. 2) spectroscopies. The two characteristic features
of an impurity, the quantization of the electronic spec-
trum and the quantization of the electronic charge, man-
ifested through the electron-electron interactions, play a
major role in the physics of the nanostructures. It is the
purpose of this Letter to demonstrate how the interplay
of these two quantization eAects produces the hitherto
unexplained features of the narrow-channel experiments
of Scott- Thomas et al. and Meirav, Kastner, and
Wind. In fact, we will show that the phenomenology of
these experiments can be readily understood in terms of
an Anderson-type Hamiltonian for a single magnetic im-

purity.
The conductance of a narrow channel between two-

dimensional electron gases has been found to display a
number of remarkable features. ' Most striking are the
periodic oscillations as a function of gate voltage or,
equivalently, chemical potential. Near threshold, the
peaks in conductance are well separated with a line
shape closely matching the derivative of the Fermi func-
tion, and a width proportional to temperature. The
heights of the peaks, however, have an irregular and even
nonmonotonic dependence on temperature, in contrast to
the expected 1/T dependence of the Fermi function. The
periodicity of the conductance oscillations has been ex-
plained in terms of single-electron charging of a seg-
ment of the channel isolated by impurities or by litho-
graphic tunnel barriers (Fig. 1, inset). To our knowl-

edge, no explanation has been presented for the unusual
temperature dependence of the peaks.

In this Letter, we address the experimental phenome-
nology of periodic conductance oscillations in terms of a
microscopic model, the WolA model, similar to the An-
derson model for a single magnetic impurity. The con-
ductance is determined by a Landauer formula involving
the interaction density of states (DOS) on the impurity
site. Since the temperatures of interest are high corn-
pared to the Kondo temperature, the density of states
can be obtained by an equations-of-motion technique
that properly treats on-site correlations but neglects
correlations in the leads. We find peaks in the conduc-

tance spaced by the Coulomb-interaction energy, each
peak corresponding to the addition of an electron to the
site. The observed anomalous temperature dependence
of the conductance peaks is due to the presence of two
very different energy scales: (1) the Coulomb-interac-
tion energy between electrons U, which is approximately
equal to the capacitive-charging energy of the quantum
dot e /C —0.5 mev, and (2) the bare-energy-level spac-
ing ht. -0.05 meV for a 100-nmx 1-pm quantum dot in

GaAs. For k&T=6.e, transport occurs simultaneously
through multiple levels, but the conductance peaks
remain well resolved up to a much higher temperature
kg T=U. This leads to anomalous temperature depen-
dence in the range h, t. & kqT & U. This is to be contrast-
ed with the noninteracting case, where a temperature
larger than the level spacing would wash out the reso-
nance structure altogether.

The model we treat is the simplest one that takes ac-
count of the two dominant quantizations: charge and en-

ergy. It consists of two ideal leads coupled to a single
site on which there is a Coulomb interaction of energy U.
(The isolated I-pm segment of the channel can be treat-
ed as a site, or "quantum dot, " since the wave functions
are coherent over lengths »1 pm. For a more complete
discussion of the physical approximations involved see
Ref. 7.) Initially, we will consider only two levels on the
site, labeled by a spin index o, with energies t. which
may be degenerate. The Hamiltonian is

H = ~ 6k ck ck +~t-' c c +Until j
ak EL,R a

+ g (Vt, ck,c,+H.c.) .
a,'k G L,R

In (1), the states in the leads, labeled L and R, have en-
ergies ek, and are connected to the site by hopping ma-
trix elements Vk .

To make contact with experiment, the conductance is
calculated using a Landauer-type formula generalized
to interacting systems,

2r,.(e)rR. (E)
a = g„def~o(e) '

Im[G. (e) l .
h I e +I e

(2)
Equation (2) expresses the linear-response conductance
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as the sum of the elastic-transmission probabilities in

each spin channel weighted by the derivative of the Fer-
mi function. The elastic-transmission probabilities are
constructed as a product of the elastic coupling to
the leads and the interacting DOS on the site,
—Im[G, (cp)]/tr. ' Here G, ( cp) is the Fourier transform
of the retarded Green's function,

G, (t) = —t'e(t)& [c.(t),c.(0)]), (3)

i h, G, (t) =hh(t)+e. G.(t)
t

+ g V~.Gt,.(t)+ UG..(t) . (6)—
a;k EL,R

where the curly brackets denote the anticommutator.
We expect (2) to apply even in the presence of phonons
or other inelastic-scattering mechanisms provided that
the inelastic broadening is smaller than kg T.

In the noninteracting case (U=O), one finds G, ( cp)

=(rp —e, —Z,p) ', where the self-energy due to tunnel-

ing into the leads is

~.p(rp) = Z 1

kCL, R &ka

The full width of the resonance, which is given by
2 Im[Z p( to+i 8)], is 'just the sum of the elastic cou-

plings to the two leads, r, (co) =I t, (cp)+ I R,(cp), where

rL(R) (rp) =2 g I V~. l
'&&to ~k. ) .

k C Z. (R)

For simplicity, we assume symmetric barriers, so
r .(cp) =rR. (cp) =r.(rp)/2.

In the interacting case (Uaa), the elastic-coupling
factor in the conductance is unchanged, but the DOS
now includes the interactions. Since, experimentally, the
Coulomb-interaction energy U is dominant, it is essential
to properly treat correlations on the site. As indicated in

the inset of Fig. 1, when one level on the site is occupied,
the energy of the unoccupied level is raised by U. Thus,
double occupancy of the site is energetically costly. To
calculate G, ( o)c, we employ an equations-of-motion
method'" that accounts for these on-site correlations
correctly.

Briefly, the equations-of-motion method consists of
diA'erentiating the Green's function G, (t) with respect to
time, thereby generating higher-order Green's functions
which must be approximated to close the equation for
G, (t) Since the ti. me derivative of a Heisenberg opera-
tor is determined by its commutator with the Hamiltoni-
an, one finds

+min

0.3—

g 02

0.1

et =0, el =01Ll

keT 0.05 U

B
k T= 0.02 U

keT 0.01U
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FICJ. l. Conductance, in units of e /h, vs chemical potential,
in units of U, for three temperatures, calculated from Eq. (2).
The full self-energies in G, (co), Eq. (8), are evaluated assum-

ing spin-dependent elastic couplings, I t =0.001 U and 1
~

=0,01U=10I t. Though the bare splitting of the levels is

e~
—et =0.1U, the Coulomb interaction separates the conduc-

tance peaks by U+t.'~ —t.'t =1.1U. As k&T approaches the
bare-level splitting, the broad upper level at t. ~ begins to con-
tribute to the first conductance peak, causing it to rise with
temperature. Inset: Schematic band-edge diagram corre-
sponding to the conductance valley at p = (U+ e~)/2.

There are two new Green's functions on the right-hand
side of Eq. (6): The first, Gt„(t), is generated by the
hopping term in the Hamiltonian and is given by (3)
with the on-site lowering operator c,(t) replaced by
ct„(t). The equation of motion for Gt„(t) closes since
the only Green's functions generated are Gt„(t) and
G, (t) The se.cond new term in (6) is generated by the
Coulomb interaction Untn~ and involves a two-particle
Green's function

G.—,(t) = —e(t)&ic.'-(t)c.-(t)c.(t),c.'(0)i), (7)

where a and a are opposite spin directions. In the ab-
sence of hopping, G;,(t) can be obtained exactly via its
equation of motion and the identity n n =n, . For finite
hopping, an approximate solution, valid for temperatures
higher than the Kondo temperature, ' kgT~=(UI ) '/

xexp( —trip —e, ~i/I ), is obtained by neglecting terms in

the equation of motion for G;,(t) which involve correla-
tions in the leads. '

After truncation of the higher-order equations of
motion, the equation for G (t) closes. We find that the
Fourier transform G, ( )thpas two resonances —one at e,
weighted by the probability, 1

—&n;), that the other level
is vacant, and one at e, +U, weighted by the probability,
&n-), that the other level is occupied, '

I —&n.-& &n.-)
G.( )=to +

co E~ [X~p UZ~) (to e~ U Z~p X~3) ] ro e~ U [Z~p+ UX~p( tap~ Z~p Zg3) l
(8)

Expression (8) for G, ( )itsoexact both in the noninteracting limit (U=0) and in the isolated-site limit (Vt„=0). Gen-

erally, and in contrast to the noninteracting limit, G, ( o) depends on the temperature and chemical potential through

&n;) and through the self-energies X, ~
and Z 2. In Eq. (8), Z p(rp) is the ordinary self-energy due to tunneling of the a
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electron (4), while the other self-energies are due to tunneling of the a electron,

t-'~+ t-'a t- aa co —e, —e- —U+ ej,; i =1,2, 3,

where Ar, =fFD(e;), Ar, — =1 fop(e —), and A&; =1.
It is interesting to note that for T & Tz, the equations-
of-motion solution has a Kondo resonance at the Fermi
surface, as expected for an Anderson Hamiltonian. An
analysis of the conductance in this limit has been given
by Glazman and Raikh, ' and by Ng and Lee. '

The equations-of-motion solution (8) for G, (ro) can be
employed to calculate the conductance via the Landauer
formula (2). Because the elastic couplings increase rap-
idly near the top of the barriers, it is instructive to con-
sider two levels, spin split by e~

—et =0.1U, with very
different couplings to the leads, which are taken to have
broad, flat densities of states. For this case the elastic
couplings (5), from which the full self-energies (9) can
be determined, are constant and are chosen to be spin
dependent, I t

=0.001U and I
~
=0.01U =10I t. The

conductance is plotted, in Fig. 1, as a function of chemi-
cal potential for three temperatures. Several features
are noteworthy: (I) Although the bare-level spacing is
4e =0.1U, so that in principle four peaks occur in the in-
teracting DOS, there are only two peaks in the conduc-
tance, split by U+h. e= 1.1U. This suppression of peaks
follows from the dependence of the DOS of each level on
the occupancy of the other level. As p passes et, the up-
spin level fills and all the weight of the density of states
of the down-spin level is pushed up to e~+U, giving rise
to the conductance peak at p =1.1U. (2) The tempera-
ture dependence of the second conductance peak is simi-
lar to that of a noninteracting, single-particle reso-
nance —i.e., width —T, height —1/T—but the height of
the first peak actually increases with temperature be-
tween the two higher-temperature traces. At tempera-
tures comparable to the level spacing, the down-spin
channel begins to contribute to the first conductance
peak. Since the down-spin level is more strongly coupled
to the leads than the up-spin level, the conductance at
the first peak increases with temperature. At even
higher temperatures, both conductance peaks fall be-
cause of the 1/T dependence of the amplitude of fFo(e).
In the opposite limit of temperatures much less than the
resonance widths, the peak conductances approach e /h,
the value for a single ideal channel.

To compare directly to the experiments, it is necessary
to generalize our results to multiple levels on the site. In
the relevant high-temperature regime (kqT»I ), the in-

tegral in (2) can be carried out exactly, since in this limit
the interacting density of states for a level n can be ap-
proximated by a sum of delta functions P P„(m)6(e„
+mU —e). The weight P„(m), obtained exactly from
the equations of motion for multiple levels, turns out to
be the probability that m levels, other than level n, will
be occupied for the isolated site, and is therefore given

g g I „P„(m)fFo (e„+mU) .
n pl

(10)

The strengths of coupling to the leads, I „, are still essen-
tial in (10) in setting the magnitude of the conductance
even though their effect of broadening the DOS is negli-
gible for kgT» I „.

In Fig. 2(a), we have plotted experimental conduc-
tance data for a narrow-channel GaAs structure with
lithographic barriers. ' For comparison, in Fig. 2(b), we
have plotted the theoretical conductance (10) as a func-
tion of chemical potential for a system of 10 nondegen-
erate levels. The coupling strengths I „ofsuccessive lev-
els increase by a factor of 1.5 to reflect the increase in
the tunneling matrix elements near the top of the tunnel
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FIG. 2. (a) Experimental conductance of a narrow GaAs
channel with two lithographically defined barriers plotted
against gate voltage for four temperatures (Ref. 18). (b)
Theoretical conductance, in units of (I I/U)(e'/h), for ten lev-

els, spaced by h, a=0.1U, vs chemical potential, in units of U, at
four temperatures, calculated from (10). The elastic couplings
of the levels increase geometrically, I, =1.5 "I

I (to simulate
disorder 14 is increased by an additional factor of 4). While
for k8T((he only one bare level contributes to each conduc-
tance peak, for k&T=Ae many levels contribute, permitting
the conductance to rise with temperature.

3.0

!
by the corresponding Boltzmann weight. From Eq. (2)
for the conductance, we find the multilevel conductance
formula '
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barriers. The constant, bare-level spacing is taken to be
Ac=0. 1U. (These parameters are obtained assuming
parabolic barriers with the lithographic width of 100 nm
and a height of 0.75 meV, estimated from the product of
the level spacing, 0.05 meV, and the fifteen oscillations
observed before the top of the barrier is reached. A
similar rapid increase of couplings is also expected near
the parabolic maxima of the screened-impurity-potential
barriers in the Si structures. ) At low temperatures
(ktt T &(he), each conductance resonance corresponds to
transport through a single level. As p increases and each
level is filled, the peaks in the density of states of the
remaining levels are pushed up by U, leading to conduc-
tance peaks spaced by U+h, t. =1.1U. For temperatures
comparable to ht. , multiple levels participate in trans-
port, and the stronger coupling of higher levels leads to
an increase of conductance with temperature. The
effects of random fluctuations in coupling strength, rep-
resented by a factor-of-4 enhancement of I 4, are
smoothed out for k&T & h, e by the averaging over multi-

ple levels. Similarly, random fluctuations in the bare-
level spacing lead to fluctuations in the conductance-
peak spacing. However, these fluctuations would no
longer be noticeable for k&T & h, t. The phenomenology
of the experimental conductance is well reproduced by
the theoretical results at a realistic ratio of the bare-level
spacing to the Coulomb-interaction energy.

In conclusion, we have analyzed the narrow-channel
experiments of Scott-Thomas et al. and Meirav,
Kastner, and Wind in terms of an Anderson model for a
site coupled to ideal leads. The observed periodic con-
ductance oscillations are explained by the periodic van-

ishing of the energy gap to addition of an electron to the
site. Although the separation between conductance
peaks is set by the large Coulomb-interaction energy, it
is the much smaller bare-energy-level spacing which
determines the temperature dependence of the conduc-
tance peaks. The observed temperature dependence is

explained by simultaneous transport through multiple
levels whose coupling to the leads increases rapidly with

energy near the top of the tunnel barriers.
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Note added. —Following the submission of this paper,
the high-temperature conductance formula (10) has
been quantitatively verified on a GaAs structure in the
quantum Hall regime. '
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