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Fractal Model of Radon Emanation from Solids
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A fractal model of radon emanation from solids was developed, based on c recoil from the a decay of
radium. Range straggling of the recoiling radon atoms in the solid state was included and the fractal
geometry was employed to describe the roughness of the emanating surface. This allowed derivation for
the first time of the relation between the radon emanating power and the specific surface area as mea-
sured by the gas adsorption. It is suggested that emanating-power measurements can be used to deter-
mine the fractal dimensions of surfaces on the scale from tens to hundreds of nanometers.

PACS numbers: 61.16.—d, 23.90.+w, 34.50.8w, 89.60.+x

There has been a renewed interest in Rn research dur-
ing the last decade or so triggered by the realization that
the Rn daughters are a primary source of the natural-
radiation dose delivered to the general population. '

Most of that research has been focused on geological and
health-related aspects. In this paper we describe the
physical basis for Rn emanation, which makes the Rn
atoms available for other processes. It is well established
that at room temperature Rn emanates from solids by e
recoil from the a decay of Ra. Owing to recoil energies
—100 keV, the ranges of Rn atoms in solids are merely
of the order of tens of nm. Consequently, the ejection of
Rn atoms into the air space can occur from a solid re-
gion close to the surface, which makes the emanation an
essentially surface phenomenon. Attempts to relate the
emanating power ER to the surface-to-volume ratio S/ V
or the specific surface area A of the emanating solid have
been made using Euclidean geometry (emanating
power is referred to as a fraction of Rn atoms that
emanated under steady-state conditions). They resulted
in the relation

Eg = —, RS/V = —,
'

RpoA, ro»R,
where R is an extrapolated range of Rn in the solid, ro is
the radius (the half size) of the emanating grain (solid),
po is the solid-state density, and an assumption of uni-
form distribution of Ra in the solid was made. In a pre-
liminary work we found discrepancies between Eq. (1)
and experiments as high as a factor of 31 for specific sur-
face area of several hundreds m g ', and we attributed
them to the use of extrapolated rather than median pro-
jected ranges, the Euclidean character of Eq. (1), as well
as Rn implantation eAects. In this paper we discuss the
range straggling of recoiling Rn atoms in emanation
from a plate, followed by a development of a fractal
model of Rn emanation based on the fractal geometry of
Mandelbrot. This yields the proper relations between
Ett and S/V as well as ro for the first time. In addition,
we discuss the processes associated with emanation, such
as Rn-atom implantation and indirect recoil, as well as
suggest a new process of penetrating recoil.

r

W(r) = 1 1 erf
R

, (2)4«' J2tro„, JXa

where the error function erf(t) is introduced. The R„,
and n.„, can be calculated from the Lindhard, ScharA,
and Schidtt (LSS) theory of energy loss by kev ions.
Some of the recoils will lead to emanation at the air-solid
boundary as illustrated in Fig. 1 by an arrow. We con-
sider the emanation from an infinite plate of half thick-
ness ro. The Rn emanating power is calculated by in-

tegrating Eq. (2) over the spherical segment protruding
from the solid (see Fig. 1) and averaging over the
volume of the plate. For ro(2R we have to include

—(r —R ) 2/2o 2
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FIG. 1. Rn emanation from plate for a decay of Ra at point
O. R„, is the median projected range of the recoil in the solid.

We consider an isotropic z decay of ' Ra in the
solid. The recoil energies Eo are 103 and 86 kev for
220Rn and Rn, respectively. Rn atoms lose their ener-

gies in the elastic collisions with atoms of the solid (nu-
clear stopping). Because of the range straggling, the
recoiling atoms will stop at a distance between 0 and

2R„, from the point of decay, where R„, is a median pro-
jected range in the solid. Assuming a Gaussian range
straggling and neglecting the angle straggling as well as
channeling eA'ects, the normalized probability of finding

the Rn atom in the solid at a distance r from the decay
point is given by
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the emanation from both sides of the plate. The result is

Ep = I/4x, x ~ 1, (3a)

Z, =—(1 —x)+1 1

2 8x
(1 —2x) erf[b(1 —2x)]

8x erf(b)

—b2(I —P&) 2 —b 2

e —e

8Jnbx erf(b)

ER = 1/4x, x ~ 0.5, (4a)

ER =1 —x, x &0.5. (4b)

The differences between Eqs. (3) and (4) are ~ 8%,
which justifies further use of Eqs. (4), especially consid-
ering the other assumptions made.

To describe the emanation from a realistic rough sur-
face we assume that it is self-similar. It is a reasonable
assumption considering that a majority of surfaces have
been found to be self-similar in the molecular range. As
before, we consider an infinite plate of half thickness ro
with a fractal surface such as the one depicted in Fig. 2.

+ gb "
y

—+1 b —
y —+

2Jnberf(b) ~=p 2
'

2

where the reduced variables x =rp/R and b =R /J2o
are used and the incomplete y function y(s, t) is ap-
plied. The leading terms in Eqs. (3) are

l, b (I —2x), x&1, (3b)

The direct recoil is denoted by the arrow labeled I. Oth-
er processes from Fig. 2 will be discussed later. It is seen
from Fig. 2 that a considerable porosity is associated
with the fractal surface. It has been shown by Pfeifer et
al. that the pore-size distribution scales as Br
where r is the radius of the pore, D is the fractal dimen-
sion of the surface, and B is a constant. Considering
the fact that the pore space above the fractal surface is a
"negative" of the solid-state space, we can say that the
solid state is built from the features that bear the same
distribution as the pores. We calculate the volume-
integrated Rn escape probability E as the integral over
the above feature-size distribution using plates as the
geometrical model for emanation [Eqs. (4)] and feature
volumes given by Er for 2r & R & 2r0, Er for
R & 2r & 2rp, and Kr rp for R & 2rp & 2r, where K is

a constant. We get

E= tR/2 1— Pr0 R oo

Kr Br 'dr+ K Br 'd + K B 'd

KB 2 3 —D

(3 —D)(D —2) 4 —D
(5)

(6)

where a is the diameter of an adsorbate molecule, e.g. ,
a = 3.5 A for the N2 molecule. Combining Eqs. (5) and
(6) we get

In deriving Eq. (5) we made two assumptions. We
neglected the edge effects in emanation from plates. the monolayer volume V(a) is given by
We also assumed that, when the solid-state features are
stacked together, there is a mutual cancellation of terms ~r i 3 —Dncaa = a
corresponding to recoils that do not fall outside the sur- (3 —D)(D —2)
face boundary. The coefficient in front of Eq. (5) can be
deduced using a technique of Pfeifer et al. The surface
is covered with a monolayer of adsorbate molecules and

2D —3 R
V(a)

4 —D a

& 3 —D
2D —3

V(R ).

I.IG. 2. Rn emanation from the fractal surface. Arrows
denote the following processes: 1, direct recoil; 2, implanta-
tion; 3, indirect recoil; and 4, penetrating recoil.

In Eq. (7), V(R ) is the three-dimensional content (ac-
tually one-half of it) of the fractal surface for the cover-
ing ball radius R„,. It is obtained by centering a circle at
each point of the fractal and taking the outer hull of the
circles shown in Fig. 2 as a solid curve at a distance R
from the fractal surface.

The emanating power is the ratio of E to the solid-
state volume V, since a uniform distribution of Ra was
assumed. Using Eq. (7) as well as V(a) =aS, where S is

the Brunauer, Emmett, and Teller (BET) value of the
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surface area, one obtains

2D —
1

ER=—
4 4 —D

' D —2
a

Rm

5Rm, 2rp~ Rm .
V

(8a)

Using a similar procedure one obtains

3 —D 2rpER=1 — R &2r
4 D R s m p ~ (8b)

Equation (8a) can be expressed as a function of the
half thickness of the solid r o. Substituting S/ V
=Cry a, we obtain

R„,
ER

4 —D 2rp

' 3 —D

2rp~ R„, , (9)

where C is a shape coeScient (C= 1 for a plate). As ex-
pected, substituting D=2 we obtain the following Eu-
clidean formulas: Eq. (1) from Eq. (8a), Eq. (4a) from
Eq. (9), and Eq. (4b) from Eq. (8b), respectively. For
D=3 Eqs. (8) and (9) all yield complete emanation
(Fz =1). For D=3 the surface is formally composed of
a unimolecular layer of solid that completely fills the
space. Therefore all Rn would formally emanate from it
(but also be trapped). Real surfaces with D close to 3 do
not fill the space, however. The surface is composed of
thin solid sections with well-developed microporosity,
enabling Rn to emanate.

Equation (9) shows that the emanating power should
scale as rp . Therefore from a logarithmic plot of ER
versus the size, one should be able to deduce the fractal
dimension of the emanating surface. We illustrate this
point by plotting in Fig. 3 the emanation results from
materials of geological origin. Barretto measured the
emanating powers of Rn from sieve-separated size
fractions of Lipari volcanic glass (squares). The ER

values in the vicinity of 10 —10 are characteristic of
a uniform distribution of Ra, for grain sizes of the or-
der of several pm. The straight line is a least-squares fit
to the data. From the slope of —0.83+ 0.06 we get a
value of D =2.17+ 0.06. It is noteworthy that, while the
gas-adsorption technique is sensitive to the region of
self-similarity between fractions of nm to tens of nm, the
emanation technique is sensitive to self-similarity in the
range (R /2, R r,. „/2r;„), where r;„and r,„are. the
minimum and maximum radii of particles studied, for a
particle with radius r,. „. Applying these concepts to the
data of Barretto and using R =26 nm ~;„=47 pm,
and r,. „=1000pm, we get a range of self-similarity be-
tween —13 and —280 nm. The emanation technique
for D determination thus complements the adsorption
technique by being sensitive between tens and hundreds
of nm. The other data plotted in Fig. 3 are for Rn
(triangles) and Rn (diamonds) emanation from pitch-
blende. ' The least-squares fits yield a v" lue of D
=2.83 ~ 0.03.

To illustrate a dependence of ER on 2 we plot in Fig.
4 the data of Quet and Bussiere'' for the Rn emana-
tion from MgO containing Ra. The specific surface
areas were measured by N2 adsorption. The curve in

Fig. 4 has a linear section, between points 8 and 16, and
it deviates from linearity between points 1 and 7. The
slope ER/2 of the linear section is about 25 times lower
than the one predicted by the Euclidean formula [Eq.
(1)j. Points 7 and 1 can also be assigned "slopes" which
results in the discrepancy factors of 26 and 31, respec-
tively. 2 can increase when ro decreases or D increases.
We thus conclude from Eq. (8a) that the linear section
in Fig. 4 has a constant D and a decreasing r p, while the
deviation from linearity corresponds to both an increase
in D and a decrease in rp. This is supported by our es-
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Emanating power ER plotted vs the average size of
a, "Rn from Lipari volcanic glass (Ref. 9); &,
0, Rn from pitchblende (Ref. 10).

FIG. 4. Emanating power ER plotted vs the specific surface
area 2 for "Rn from MgO (Ref. l l).
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timation of the fractal dimensions for points number 14,
7, and 1, by fitting the fractal BET model' to the re-
ported adsorption data: '' We obtained D = 2.4, 2.6, and
2.9, respectively. Also, the grain sizes appear to be de-
creasing for points 14, 7, and 1, respectively, on the basis
of the reported electron micrographs. '' Using the frac-
tal Eq. (8a) and the values of D above, the
theory/experiment ratios of slopes drop to 4.5, 2.7, and
1.5 for points 14, 7 and 1, respectively. The remaining
discrepancy factor of 1.5-4.5 is attributed to Rn loss due
to implantation in the solid. Thamer, Nielson, and
Felthauser ' studied the effects of water in Rn emana-
tion from rocks [i.e., Ett(wet)/Ett(dry)]. They found a
range of water effects between 1.4 and 4.1. Because the
recoils are believed to stop in water rather than implant,
these data support the fractal model with implantation.

The Rn atoms recoiling from the surface have a distri-
bution of kinetic energies from 0 to Eo keV depending on
the position of a decay under the surface. They can im-
plant in the same surface, such as indicated by arrow 2
in Fig. 2, or into a neighbor grain, if the interstitial sepa-
ration between the grains is smaller than the recoil range
in the air. Considering the emanation from the plate and
implantation into another plate the net emanating power
is given by

1Et &mER=
4 Eo ro

(10)

where E, is a threshold energy for implantation. Thus

Ett would be reduced by a factor Eo/E, due to implanta-
tion. E, does not have a fixed value and the sticking
probability ranges from —10 at eV energies to -0.6
at 3 keV and is equal to 1 for energies ~ 5 keV. ' Us-

ing Eo =103 keV and E, = 3 keV we get a reduction fac-
tor of —34, much higher than that observed above
(1.5-4.5). There are two ways of explaining this: with

the help of indirect recoil or penetrating recoil, shown as
arrows 3 and 4 in Fig. 2, respectively. The concept of in-

direct recoil' assumes that part of the Rn can diffuse
out from implantation sites through the radiation-
damaged zone (damage diffusion). The experimental
evidence suggests, however, that this process occurs only
for energies ~ 5 keV. ' We therefore suggest that it is

the penetrating recoils from Fig. 2 (arrow 4) that are re-

sponsible. With an increase of D from 2.4 to 2.9, surface
roughness increases and the surface acquires a large
number of small irregularities. The recoiling Rn atoms

can penetrate these irregularities through losing their en-

ergy. This process diminishes the implantation and the
ratio of theoretical to experimental slopes decreases from
4.5 to 1.5. The concept of penetrating recoil is also con-
sistent with the emanation of Rn from pitchblende
(Fig. 3). From Eq. (9), Ett( Rn)/Ett( Rn) is ex-
pected to be [R ( Rn)/R„, ( Rn)] or 1.03. The
experimental ratio is 1.84. We attribute this high ratio
to the fact that Rn atoms, having higher ranges,
penetrate through more surface irregularities for this
high a=2.83, and thus more of them emanate.
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