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Shear Melting of Colloids: A Nonequilibrium Phase Diagram
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Experiments show that charge-stabilized colloidal suspensions form crystals which can melt by applied
shear stress. We present a molecular-dynamics simulation study of shear melting in colloids. The non-

equilibrium phase diagram is calculated for a volume fraction which has an equilibrium fcc structure.
The mechanism for flow in the sheared solid is found to be planes sliding over planes. We find that weak
equilibrium solids (high added salt) shear melt, but strong equilibrium solids do not. Instead, shear pro-
duces a crossover to a new solid structure. This appears in the phase diagram as a reentrant solid phase.
Results for shear stress and phase diagram are consistent with existing experiments.

PACS numbers: 62.20.—x, 64.70.Dv, 82.70.Dd

An understanding of the plastic deformation of solids
is fundamental to materials science. Deformation at low
shear rates is qualitatively understood in terms of the
creep of dilute dislocations. ' The mechanisms of defor-
mation at high shear rates are different and not well un-
derstood. An understanding of these mechanisms is im-
portant for a wide variety of problems, including flow of
the Earth's crust, ' friction, and shearing of colloids.

High-shear-rate experiments on normal solids have
been thwarted by the immense shear stress required.
Recently, this di%culty has been overcome by studying
the "soft" solids formed by charged monodisperse poly-
styrene spheres (polyballs) in solution. Polyballs form
equilibrium fcc, bcc, or fluid phases, ' depending on the
volume fraction of polyballs p and the concentration of
added salt p, . Increasing p strengthens interactions and
favors solid phases. Increasing p, screens interactions
and favors the fluid phase. These polyball phases behave
much like atomic matter. However, polyball radii and
interparticle spacings are of the order of a micron. Since
elastic moduli scale with density, polyball crystals are
10' times weaker than ordinary solids.

Experimental work on sheared colloidal systems has
focused on measurements of the structure factor S(k)
and of shear rate versus stress (y-cr) curves. The
sheared solid is found to undergo structural transforma-
tions with increasing shear rate. ' In some cases, a nov-

el first-order melting transition occurs. The origin of
this shear-melting transition is not yet understood.

In this Letter we present the first molecular-dynamics
(MD) simulation study of shear melting in colloids. The
(p„j) phase diagram is calculated for a volume fraction
where the equilibrium structure is fcc. The structure of
the shearing solid is examined through calculation of the
structure factor S(k) and through imaging of particle
positions. Finally, y-a. curves are calculated. Results
are consistent with existing experimental data.

We chose system parameters corresponding to experi-
ments by Lindsay and Chaikin, who used 910-A-
diameter polyballs at &=0.04. The equilibriutn (p, p, )
phase diagram and shear moduli of this system were well
fitted by MD calculations with a screened-Coulomb
(Yukawa) potential for an effective polyball charge
Z* =450e.

Our simulations use the Sllod' algorithm. A constant
shear rate is applied by deforming the simulation cell
uniformly in time in the shear direction v. We denote
the velocity gradient direction by V and the remaining
perpendicular direction by c. For reasons outlined
below, the simulation cell was allowed to shear along c in

response to internal stress using an extension of the
Parrinello-Rahman (PR) method. '' The number of par-
ticles N ranged from 768 to 2304.

Previous work on sheared systems has shown that
simulation results may depend on the method used to
maintain constant temperature. To test for such eflects
we used both the Nose-Hoover and Berendsen algo-
rithms. ' ' In sheared systems, the thermal kinetic en-

ergy is defined relative to the mean How. In some simu-
lations we assumed that this was Couette flow, but it
need not be' at high j. Thus, we have also implement-
ed the profile unbiased thermostat (PUT) which calcu-
lates the mean flow self-consistently. Except as noted,
all algorithms gave the same results within our accuracy.

The dimensionless quantity measuring the eA'ect of
shear is the Deborah number, De, which equals the shear
rate times a relaxation time. ' Since our MD simula-
tions involve ballistic motion, the relevant relaxation
time is the Einstein period, 2tr/coE. The experimental
systems are overdamped because of the surrounding wa-
ter. The relevant relaxation time is rq;tt=ao/6D, the
time for a free particle to diffuse a typical interparticle
spacing ao=n ', where n is the particle density and D
is the diffusion constant. Our studies extended to De
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—0.7 which is slightly larger than the range studied in

experiments. While ballistic and diffusional dynamics
may in principle lead to diff'erent behavior, our studies
indicate that only De is relevant. Note that hydro-
dynamic forces in the experimental systems are negligi-
ble. Their ratio to the Yukawa interactions is of order

f=6De(p ' —p' ) kT/mco a

For our parameters, f & 0.02 when De & 1.
One important experimental observation is that shear

melting has a strong orientational dependence. Shear
aligns the close-packed planes perpendicular to V, with
the close-packed direction in the planes parallel to v.
Crystallites with diAerent orientations melt and recrys-
tallize with the preferred alignment. The special feature
of this orientation is that planes of particles slide most
readily over each other. The interplanar distance is

maximized, and particles glide between lines of particles
in neighboring planes. Our simulations reproduce this
strong orientational character. Solids sheared in a
diAerent direction melt at extremely low shear rates.
Results presented below are for the preferred orientation.

One method for determining the melting point is from
the values of De where a solid phase melts or a liquid
phase freezes. Since melting is a first-order phase transi-
tion, there may be a large diA'erence between these
values in small simulation cells. To obtain a more accu-
rate melting line, simulations were performed on a sys-
tem initially composed of a solid half and a quid half.
The stable phase at a given (p„De) is the one that grows
to fill the simulation cell. This method gives an equilibri-
um melting transition at p, =31+ 1 pM which agrees
with results of recent free-energy calculations. ' The
phenomenological Lindemann criterion gives a slightly
larger value: p, =37 pM for Z* =450e. Both values are
smaller than the experimental value p, —50 pM. Quan-
titative agreement could be improved by increasing the

unknown parameter Z*, but we focus here on qualitative
results which are not sensitive to such details.

The calculated nonequilibrium phase diagram shown
in Fig. 1 has several surprising features. One is that the
value of p, at melting decreases roughly linearly as De
increases from zero. This is consistent with recent exper-
iments, ' but density-functional calculations had predict-
ed a De ' dependence. ' ' Most surprising are the
reentrant transition to a solid structure at high shear
rates and the absence of melting at small p, . We have
checked that these features of the phase diagram are in-
dependent of our thermostat, although the shear rate at
the reentrant freezing transition may vary by 10%. For
all thermostats, fluid configurations crystallize rapidly in

the reentrant regime. Experiments also showed no
melting transition below some p, . No reentrant solid
phase was observed, since the shear rate was not in-
creased far enough above the melting transition.

These experiments determined the stable phase from
shear-rate-stress curves. The measured y-o. curves are
very similar to our calculated curves shown in Fig. 2. At
equilibrium coexistence (p, =31 pM) a pronounced non-
Newtonian response is found in the fluid phase —the
viscosity decreases with increasing De. As shown, the re-
sults for smaller p, (solid phase) collapse onto a single
curve at low and high De if the stress is normalized by
the equilibrium shear modulus c44. There is an apparent
yield stress of o~ =0.016c44 as De 0. Experimental re-
sults were normalized by the measured polycrystalline
shear modulus G, and indicated cr~ =0.035G. Since the
calculated ratio G/c44 =0.5 for these systems, the

values are consistent. We found a similar value of cr~/c44

for Lennard- Jones interactions.
The melting transition appears in Fig. 2 as a discon-

tinuous increase in o. with increasing De—the solid
phase has a lower viscosity than the fluid. In the pre-
ferred crystal orientation, particles are aligned to slide
smoothly past each other, while the disordered fluid
structure leads to frequent "collisions. " As in experi-
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FIG. 1. Nonequilibrium phase diagram of sheared colloidal
solids. Bounds on the transition line (solid) are indicated by
the symbols. Squares (crosses) indicate systems that crystal-
lized (melted).
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FIG. 2. The normalized shear-rate-stress curves for selected
p, . Statistical errors are of order 10%.
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ments, o. increases by roughly a factor of 2 at melting.
The response of the melted phase falls on a nearly
universal fluid curve. No melting is seen in the data for
p, =0. Reentrant freezing for p, = 10 p M is indicated in

Fig. 2 by a drop in the stress at De —0.45.
Experimental values ' of j at melting ranged up to

about 150 Hz. Since id;g=1.5 msec, this corresponds to
De=0.23 which is roughly equal to our highest melting
transitions (—0.25). This level of agreement may be
fortuitous since the appropriate relaxation time for De is
only defined up to a constant of order unity. However,
the simulations clearly reproduce the orders of magni-
tude of the relevant stresses and shear rates.

Having shown that our simulations model the experi-
ments reasonably well, we turn our attention to the
shear-flow mechanism. Possible flow mechanisms in the
solid phase include planes sliding over planes, vacancy
motion, dislocation motion, and grain-boundary sliding.
The orientational dependence of shear melting suggests
that plane-over-plane sliding dominates at these high
shear rates. We have verified that the preferred orienta-
tion gives the minimum stress for plane-over-plane slid-
ing. The fcc close-packed planes stack in an ABC se-
quence along V. Figure 3 shows the path of minimal
stress followed by particles in a plane sliding over an 2
plane. As discussed by Ackerson et al. , the path is a
zigzag line between positions corresponding to 8 and C
planes. If all planes slide at the same rate, the structure
alternates from one fcc stacking sequence (ABC. . .) to
its twin (ACB. . .). We allowed our simulation cell'' to
shear along e, so the solid could follow this path. The
maximum stress along this minimal path, cx „. „=0.04c44
occurs where the straight line (dotted) meets the zigzag
path in Fig. 3. The observed solid shear stresses are
comparable (0.016c44 to 0.045c44), and thus consistent
with plane-over-plane sliding as the mechanism for
shear.

e, .

FIG. 3. Trajectory of the interplane displacement Ax over
an 8 plane. The solid line at the top shows the minimal path
between B and C positions for a T=O crystal. Below is a tra-
jectory for p, =10 pM at De=0.02. The bottom trajectory is
for De=0. 13 (just below melting). The dotted line is the
straight-line trajectory found for a&)cr .„. We call this plane
position 8'.
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Examination of particle motions in our simulations
bears out this conclusion, but shows that planes move in-
coherently. At low De, particles lie in close-packed
planes normal to V. Figure 3 shows a typical trajectory
of the differential displacement between two planes, hx,
at De =0.02. The zigzag motion along the minimal path
is clearly evident. In addition, prolonged sticking at the
fcc positions corresponding to 8 or C stacking is exhibit-
ed. Plots of Ax versus time show jerky motion —a suc-
cession of rapid jumps separated by plateaus of different
length. Jumps of different planes occur incoherently,
disrupting the stacking sequence. This is not surprising
given that the applied stress is less than o „Thermal
fluctuations are required to allow interplane sliding.

As the shear rate increases, the trajectory deviates
from the minimal path and there is less time for planes
to lock (Fig. 3). For p, ) 5 pM the planes become in-

creasingly disordered and eventually melt. The onset of
melting coincides with loss of layering normal to V. For
p, (5 pM, o. reaches o,„at De —0.25. Above this De
all planes can slide freely. Shear becomes an ordering
force—displacements about the close-packed positions
decrease to eliminate collisions between neighboring
planes. At higher p„ the reentrant solid phase results.

The value of a actually decreases with increasing De
for De) 0.4. This leads to one of the few observed
thermostat-dependent results. Using the "biased" ther-
mostat which assumes Couette flow, we find hx ap-
proaches the straight-line trajectory shown in Fig. 3.
The planes stack in an AB'AB' stacking sequence with
lines of particles in one plane centered between lines in
the plane below. In PUT simulations, the flow deviates
dramatically from a Couette form. Large blocks of
planes move together and the shear is localized between
these blocks. This "blocking" reflects an inherent linear
instability when da/dDe(0. Regions which slip more
rapidly feel less stress and accelerate. Slower regions are
decelerated. This blocking may occur in molecular sys-
tems. However, the water surrounding colloidal parti-
cles adds a positive contribution to da/dDe which stabi-
lizes Couette flow. In any case, all thermostats produce
nearly the same phase boundary (within 10%) for
De) 0.4.

Xue and Grest also found a reentrant ordered phase in
their Brownian dynamics simulations of colloids. ' The
phase appeared at temperatures above the equilibrium
melting transition and at higher De () 2.5) than in Fig.
1. Lines of particles ordered into a close-packed array in
the V-e plane with no order along the lines. Similar
structures have been found in sheared molecular fluids.
In contrast, our results show well-defined close-packed
order in the v-e planes. Also, the AB'AB' stacking corre-
sponds to a distorted hexagonal lattice of lines in the V-e
plane. We varied the shape of our simulation cell to
check that this distortion is an intrinsic effect. Brown
and Clarke may have observed a similar structure in
simulations of sheared soft-sphere crystals, although they
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refer to it as hexagonal close packed.
Experiments have studied changes in order through

scattering measurements of S(k). Individual close-
packed planes with lattice constant a produce Bragg
peaks on a triangular lattice with spacing 4tr/a J3 in the
kv =0 plane. In an fcc crystal, two-thirds of these peaks
vanish by symmetry. Experiments show peaks at the
suppressed positions which grow relative to the allowed
fcc peaks. We find the same trend. Shear changes the
interlayer order and breaks the fcc symmetry.

Changes in the order between layers can be seen by
examining the line ka =2tr(0, 2/J3, kv). The two fcc
twins produce peaks at kv= I/J6 and ( —,

' )'l . At low
shear rates our time-averaged S(k) has peaks at both
positions, indicating substantial ABC stacking order. By
De —0.05-0.1, the maximum shifts to a central position,
kv = ( —,

' ) 'l, indicating a crossover to AB'AB' stacking.
To date there are no structural measurements in the

region of p, where melting is not observed. Such studies
and searches for the reentrant freezing transition will be
important tests of our results. Experiments at even
higher De may reveal interesting new behavior due to
hydrodynamic forces.
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