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Relaxation of a Single Chain Molecule in Good Solvent Conditions
by Molecular-Dynamics Simulation
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The dynamic relaxation of various structural properties of a single freely jointed N mer (N-=6,9, 30)
in explicit solvent at relatively high dilution is investigated by molecular dynamics. In the large-k re-

gion, the normalized intermediate scattering function I(k, r) appears to be a universal function of rk

with x =2.9+ 0.1, in good agreement with experiments and close to the prediction of the Zimm model
(x =3).

PACS numbers: 61.20.Ja, 36.20.Ey, 61.25.Hq

Most of the computer-simulation studies of the dy-
namic relaxation of polymers in dilute solution have been
restricted to models treating the environment of the
chain in a stochastic way. Various dynamic Monte Car-
lo or "Brownian dynamics" schemes have been exploited
either in continuum' or on lattices. Full "atomic"
models of solvent have been the object of a few mole-
cular-dynamics (MD) studies, which, in comparison
with the results of the "cheaper" stochastic methods,
have been much less conclusive about the validity of dy-
namic scaling laws.

In the present Letter, we report MD simulation results
for various systems consisting of one N-mer (N =6, 9, or
30) embedded in a Lennard-Jones solvent at fixed tem-
perature and density corresponding to good solvent con-
ditions. Our main result concerns the universal behavior
of the intermediate scattering function S(k, t) of the
chain in the accessible "high" k region, typically 2x/d
& k & 2n/R~, where d is the bond length between adja-

cent monomers and Rg is the gyration radius of the
chain. A single curve is obtained for all N-mers when

1(k, t) =S(k, t)/S(k, 0) is plotted as a function of the re-
normalized time t'=t(kd)" with x =2.9 ~0.1. This re-
sult is in remarkable agreement with light-scattering ex-
perimental data on polystyrene in benzene which yield
x'" '=2.85~0.05. Scaling theory' " relates x to two
other scaling exponents v and v', defined by Rs ee (N
—1) ' and by the center-of-mass diffusion coefficient
DG rx: (N —1) ', through x =2+ v'/v and v=0.6 for
chains in good solvent conditions. In the presence
(Zimm model) or in the absence (Rouse model) of hy-

drodynamic interactions, ' ' ' the exponents are predicted
to be v'=v, x =3 and v'=1, x = —", , respectively. To
our knowledge, our estimate of x is the first computer-
simulation evidence of a Zimm-type relaxation, in con-
trast with the above-mentioned stochastic simulations
which, quite consistently with the absence of explicit sol-
vent, led systematically to Rouse-type relaxation.

We have also studied the dynamic relaxation of vari-
ous structural quantities such as the end-to-end vector R,
its square modulus R, and Rg, The two last quantities
show, within statistical errors, the same relaxation be-

havior. For R and R, single curves are obtained for
diferent chain sizes in terms of a renormalized time
t/(N —1)', where a is close to 1.55 for both quantities
(see Table II). This suggests that the natural time scale
for those quantities is somewhat diff'erent from that for
5 (k, t ) in the large-k regime, the latter being a = vx
= 1.69+ 0.06.

According to scaling arguments, ' the static strocture
factor S(k) should obey a power law k '~' in the range
2.5/Rs ~ k ~ x/d. This is indeed observed and yields
v=0.584 ~0.001 for N =30. Assuming that our chains
are already in the static scaling regime, the N depen-
dence of R~ (see Table II) gives v=0.568 ~0.006 in fair
agreement with the previous estimate.

Our experiments may be described as follows. The N
beads of a freely jointed chain and the N, solvent mole-
cules have the same mass m. The same Lennard-Jones
interaction (a, e), truncated and shifted to zero at its
minimum, is imposed between any solvent-solvent, bead-
solvent, or bead-bead pair except for first-neighbor beads
along the chain which are connected by a rigid bond of
length d=1.075'.. The equations of motion were in-

tegrated in Cartesian coordinates with the velocity ver-
sion of the Verlet algorithm' using a time step h, t
=0.005a(m/s) '~ . The bond length was kept fixed by
using the SHAKE iteration scheme. ' In order to com-
pare diAerent systems in similar thermodynamic condi-
tions, the density was always fixed to p=(N+N, )/V
=0.80496a with a ratio N, /N close to 23 (see Table
I). We used periodic boundary conditions and generated
the initial system configuration on a simple cubic lattice
with a lattice constant equal to d. The imposed ratio
N, /N then led us to take, for two system sizes, a slightly
noncubic MD box; however, we did not detect any an-
isotropy of the structure factor of the chain. The tem-
perature was fixed to kiiT/@=1. 5 by a thermostat of the
Nose-Hoover type' with an inertial "mass" parameter

Q fixed by Q/g =0.02mcr, where g =2N+1+3N, —3 is
the total number of degrees of freedom coupled to the
thermostat. For all systems, the pressure P was virtually
the same, P/pkqT=7. 35 ~0.01. In Table I we report
the time lengths of our experiments which are more than
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TABLE I. End-to-end distance R, gyration radius Rg, and center-of-mass diA'usion

coefficient Dg for the chain lengths considered. Dg(i. ) and D~(r) are the values estimated
from the velocity autocorrelation function and from the mean-square displacement, respective-
ly. N, and N( are the number of solvent particles and the number of time steps. T:/v is defined

by rw =R~'/D& and 7' denotes the time length of the run. Reduced units are defined as follows:
R =R *o', Do =Dg cr (s/m ) ', r w

= r w a (m /s) '

N N, 10 N( lo'D,*(i) to'D,*(r) rw 7/rw

6 144
9 207

30 690

2.76+ 0.02 1.165 + 0.005
3.74 ~ 0.04 1.525 + 0.008
7.8+ 0. 1 3.16+ 0.03

2.5 ~ 0. 1 2.430+ 0.006 56
2.0 ~ 0. 1 1.96 ~ 0.01 120

0.86+ 0.05 0.818+ 0.001 1220

358
168
45

1 order of magnitude longer than in previous similar
studies.

Table I also shows the measured values of R and Rg.
When plotted against N —1, they obey power laws which
provide estimates of the Flory exponent v slightly below
0.6 (see Table tt).

The structure factor S(k) for all chain lengths is
shown in Fig. 1 as a function of k. Even for the shortest
chain (N =6), S(k) presents a region in which it can be
described by the power law S(k) =Cwk ' '. The es-
timated values of v for diA'erent N are reported in Table
II. Scaling arguments are founded on the assumption
that for very long chains and for kRg»1 the constant
C/v does not depend on the chain length. ' Our results
show that the power-law behavior in S(k) is indeed ob-
served in the expected k range, although S(k) has, of
course, not reached its N-independent limit. In the next
discussion on dynamic scaling, v will always be con-
sidered as a fixed parameter with a numerical value cor-
responding to the slope of lnS(k) for N =30 (see Table
it).

The main object of this work was to analyze the relax-
ation of the chain in solution which is best characterized
by the intermediate scattering function S(k, t). For this
quantity, the scaling hypothesis leads to the expression'

S(k, t) =NF(kRg, Rg Dot),

where F is a universal function. In the regime kRg»1
where internal motions of the chain are probed, S(k, t)
is expected to be independent of N. If, in addition, it is
assumed that N is sufticiently large for Rg and D~ to de-
pend on N as Rg eeN' and DG eeN ', S(k, t) should be

of the form

S(k, t) =N(kRg) '/'F(Rg DGt(kRg)"), (2)

with x =2+ v'/v for the argument of F to be independent
of N. It implies that, in the above-mentioned regimes for
N and k, I(k, t) =S(k, t)/S(k, 0) should be a universal
function of the argument Rs DGt(kRs) for arbitrary
chain size N and wave vector k.

In order to test these ideas, we computed an approxi-
mate inverse of I=I(k, t) for N=9 and N =30 by
selecting seven equally spaced values of I, ranging from
0. 1 to 0.7, and measuring for all k curves the correspond-
ing value of t =t(k, I). The above universality demands
that, for each I value, the product t(k, I)k" be indepen-
dent of k and N. Figure 2 shows for N=30 a log-log
plot of t(k, I) vs k for all of those I values. The expected
power law is indeed observed in the region 1 ~ kd ~ 4.
However, we detect a slight ( 4- 5%) but systematic
dependence of the x exponent on I. By averaging over
all slopes, we estimate the value x =2.9~0.1 which
turns out to be in remarkable agreement with the experi-
mental value '' x =2.85+ 0.05. It should be noted that
the curves t(k, I) vs k for N =9 are in fair agreement
with the N =30 case, but the dispersion on x is now dou-
bled, suggesting that the universality should be, of
course, more firmly established when longer chains are
considered. Figure 3 shows 1(k, t ) vs t (k, I)k: For
each chain size, two values of k in the scaling region are
shown. Given the statistical error on the exponent (not
shown in the figure for sake of clarity) all curves are con-
sistent.

This x value, being close to the theoretical prediction

TABLE II. Values of the static and dynamic exponents v, a, and v' estimated from diferent
sources (see text).

Flory exponent
Source Source

Dynamic exponents
a

R
Rg-'

S(k) (N =6)
(N =9)
(N =30)

0.591 + 0.008
0.568 ~ 0.006
0.587 ~ 0.003
0.583 ~ 0.002
0.584 ~ 0.001

S(k, t) (N =30)
C~~(t)
Ctt(t)
D~(r )
Dg (r)

1.69 ~ 0.06
1.56 ~ 0.07
1.54 ~ 0.03

0.52+ 0.02
0.39 w 0.02
0.37+ 0.01
0.62
0.62
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FIG. l. Static structure factor S(k) for different chain
lengths: N =30 (O), 9 (a), and 6 (A).

of a Zimm-type relaxation' x =3, is a clear indication
that the solvent does indeed play a fundamental role in

the relaxation process. From the above theoretical anal-
ysis of S(k, t), we can extract the diffusion-coefficient
exponent v'=v(x —2) =0.52 ~0.05. This exponent is

again very close to the experimental estimate v'=0. 55
~ 0.02 based on diA usion-coe%cient measurements

through the small-k behavior of S(k, t)
The most direct way to determine v' in our simulation

consists of measuring the slope of InDG against ln(N
—I ). Estimates of Dz obtained by integrating the ve-

locity autocorrelation function and by measuring the
slope of the mean-square displacement of the chain are
reasonably consistent (see Table I). The existence of a
power law for D~ is much less evident than for Rg: Al-
though such a law cannot be ruled out, it is hard to make
a definite statement at this stage. This is not in contra-

0.0
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FIG. 3. Normalized intermediate scattering function 1(k,t)
vs the rescaled independent variable t*(kd)' for N =30
(solid line), 9 (long-dashed line), and 6 (short-dashed line).
Two k values in the scaling region are shown for each N:
N =30, kRg =6.3 (O), kRg =11.4 (O); N=9, kRg =3.9 (tj),
kRg =5.2 (R); N=6, kRg =4.0 (A), kRg =4.7 (L). Reduced
time is defined as t =t*a(m/ )s't .

diction with theoretical arguments which predict the on-
set of the scaling regime for this quantity in a higher N
region than for static properties. ' Nevertheless, the
best fit to the law DG ~ (N —I) ' yields a value of v'

=0.62 which is not far from the value obtained in the
S(k, t) analysis.

Relaxation of the chain conformation can also be
monitored through normalized time correlation functions
of R ~, Rg2, and R defined for any chain property 2 as

10
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FIG. 2. N =30. Parametric plot of t (kd, I) vs kd for all
considered values of 1(k,t ) =S(k, t )/S(k, 0). The straight
lines are power-law fits of the data in the region 1 ~ kd ~4.
The estimated exponent x is ranging from 3.12 (I =0.1) to
2.77 (t =0.7). Reduced time is defined as t =t*a(m/s) 't'.

t ~/ (N-1) -"

FIG. 4. Normalized time correlation functions of the square
end-to-end distance CR2 (open symbols) and the end-to-end
vector CR (solid symbols) vs the renormalized tiine t*/(N
—I) ' " for N =30 (circles), 9 (squares), and 6 (triangles).
Reduced time is defined as t =t*a(m/ )'ts.
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In order to compare results for diA'erent chain lengths
and in the spirit of scaling laws, we seek the best ex-
ponent a which reduces curves for diAerent N to a single
one when they are plotted against t/(N —I )'. Using the
numerical inversion procedure described above, we find
consistent values for all properties investigated (see
Table II). Figure 4 illustrates this agreement by show-
ing Ctt2(t) and CR(t) vs t/(N —I) ' for all values of N.
Dynamic scaling requires a =2v+ v' since time should be
rescaled by rtv =Rg//DG. From our last estimate of a,
we get v'=0. 38 ~0.02 which lies definitely below the
value obtained from S(k, t). We are thus led to con-
clude that our results do not support a consistent dynam-
ic scaling picture. Whether this inconsistency is a real
eAect, a consequence of a too-short chain size regime, or
an artifact due to boundary eff'ects in simulations re-
mains an open question. Nevertheless all estimates of
the dynamic scaling exponent v' are well below the
Rouse prediction v'=1, emphasizing once more the role
of the solvent in the dynamics of the chain. This is in

contrast with the findings of a recent MD simulation on
similar systems which suggested a Rouse-type relaxa-
tion, to the authors own surprise. We believe that those
results cannot lead to any firm conclusion on dynamic
scaling, since the length of the simulation runs for the
longest chain considered (N =20) was less than 3 times
the relevant relaxation time (rtv).
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