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Exponential Tails and Random Advection
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A simple phenomenological model for a passive scalar subject to a mean gradient and undergoing ran-
dom advection plus molecular mixing yields an exponential distribution as a consequence of general ana-
lytic properties of the steady-state solution. The result persists in the presence of a coherent mean flow.

Experimental realizations of our model are proposed.

PACS numbers: 47.25.Jn

In turbulence theory, the wave-number spectrum has
played a predominant role ever since Kolmogorov pre-
dicted the exponent; and the cascade ideas underlying
that prediction have become the basis for all turbulence
phenomenology.! The probability distribution function
(PDF) seemed less interesting because for the large
scales of motion of greatest interest in most engineering
problems, most of the fluctuations of velocity and passive
contaminants follow a Gaussian distribution.? However,
proposals for corrections to Kolmogorov’s § law quickly
lead to measurements of fourth and higher moments of
the velocity derivatives and van Atta and Chen in 1970
published a PDF with exponential tails for this quanti-
ty.> Much additional data have been accumulated for
velocity and scalar derivatives and differences in the
inertial range which display exponential tails.*> Models
based on cascade ideas® or the saturation of stretching
have been proposed’ which are most plausible for deriva-
tive quantities.®

Our interest in the pervasiveness of exponential tails
stems from the Chicago convection experiments® which
showed a ‘“‘universal” exponential in the PDF for the
temperature itself (not the derivatives), in the center of
the cell. In certain regimes, the exponential only ap-
peared after high-pass filtering. In our view buoyancy
effects are not necessary for the exponential tails in these
experiments, '® nor is a multistep cascade.

We model the mixing of a scalar 8 by random advec-
tion in a velocity field with correlation length &, charac-
teristic magnitude v, and correlation time 7 ~&/v in the
presence of a mean 6 gradient. The Peclet number vé/x,
where « is the molecular diffusivity, is sufficiently large
so that within the confines of a Kolmogorov-cascade pic-
ture, the random stretching and folding produced by the
gradients of v within a scale £ may be approximated by
an eddy diffusivity ~&7 > k. Substantial enhancement
of molecular mixing within a correlation volume &¢ in a
time 7 results. Simultaneously, there is also a substan-

tial probability that a blob of fluid ~& is simply advect-
ed as a unit a distance & leaving the PDF of 0 integrated
over &9

When ¢ is smaller than all other lengths, we interpret
6 as integrated, or coarse grained, over a volume &9
around r and define a PDF, P(0,r,1), by averaging over
the random velocity. The mean scalar gradient is main-
tained by the boundary conditions P=6(0), §(6—1),
respectively, on the walls x=0,1. Then P is only
nonzero for 6 € [0,1]1. By definition, fPd@=1 and
(8)=[06Pdo is the scalar density with respect to r so
that [(6)d*r must be conserved. It will be convenient to
define the Fourier transform of P with respect to 6, P,
which serves as a generating function for the moments,
<9”>=(—i8k)"Pk|k=0.

Our model is'!

Pi(r,t+1)=—U(r,t) VP, (r,1)

+DV2P (r,1)+ P} (r,1) , (n

where U represents the translation affected by any
large-scale coherent flow that may be present in a time
7. Clearly, (1) respects the norm Py=¢=1 and con-
serves [ 0d3r. The “diffusion” of P with D~¢&2 arises
from the random advection, as one can see by modeling
its effect on Py as a random displacement by / with
(I1?)~¢&? and then expanding Py =(explik6(r+1,1)]1) in
a Taylor series to O(/?). It is distinguished by the prop-
erty that it preserves [(6"dr.

The nonlinear term which models the mixing due to
the eddy-enhanced diffusivity would appear more famil-
iar as a convolution in 6 variables. It results from ap-
proximating the mixing during a time 7z as the average
of 6 at points separated by a diffusion length, viz.,
0(x)— $[0(x —¢&/2)+6(x+&/2)]. One then exploits
the short correlation length of 6, —&, to factor the joint
probability of 6 at x £ &/2 as the product of the single
point PDF’s. The spacial separation is immaterial for
what follows and it should be emphasized that 6 inherits
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its correlation length and time from v.'*> Our approxi-
mation to the mixing reduces connected averages, (6",
=(—i9;)"InPy|x=0, by 2' ~" each iteration and thereby
relaxes an arbitrary distribution to a Gaussian one.
Note that the mean is invariant and the variance de-
creases by 2 as follows directly from the average above.

Equation (1) which, schematically at least, results
from integrating over an integral time 7 is akin to a map
and potentially allows for a simpler phenomenology than
would differential equations. In particular, the velocity
is given time to transport 6 through one course-graining
cell, i.e., a distance £&. The mixing assumes a simple
form because with large enough Peclet number to justify
an eddy diffusivity ~uv27~¢&2/7, diffusion within a
correlation volume will decrease the variance by ~2.

We begin by examining the stationary solutions of (1)
with U =0 in one dimension which for large and small D
illustrate two very different probability distributions that
share a common mean () =x. For D> 1 we can rewrite

),
Pe(x)=xe*+(1 —x)

+5 Jot e -PoG, @

where G is the Green’s function which inverts the opera-
tor 82 with zero boundary conditions. The solution by
iteration consists of a sum of § functions located at 6 =0,
1, and 2p+1)/2", p<2""2n=2. Note again the in-
terpretation of D as random advection; physical diffusion
of the 6 field would not preserve the & functions.

The opposite limit D <1 could be achieved in practice
by letting the system size increase keeping the other pa-
rameters fixed. For x away from the boundaries and
since 82(0) =0, one expects P to have a fixed shape
shifted by the mean, i.e.,

P =e™* 9% (k) 3)
with this ansatz (1) can be solved exactly to yield

x"(k)=(1+1)k2)ﬁ(1+0k2/22f)2f. (€))

i=1 .

It may be proven that the infinite product in (4) con-
verges absolutely for any complex k, making its inverse y
a meromorphic function with a strip of analyticity
around the real axis. Since y decays rapidly for large
real k, there are no & functions in P and the PDF is con-
tinuous. An analyticity strip implies exponential tails
which for (3) and (4) appear as

P~exp(—|0—(&)|/VD), (5)

with no discernible Gaussian in the center. Note that in
our units the exponential in (5) is nondimensionalized by
d{0)/dx =1.

Clearly (3) does not satisfy the boundary conditions,
but the required boundary layers can be understood by
considering the crossover between the bulk solutions for

large and small D. This appears as a well-defined bifur-
cation for (1) but within a more realistic model there are
never true & functions. Nevertheless, the phenomenon is
interesting.

Imagine P has both continuous and “discrete” com-
ponents and denote the weight of the § functions, which
all have positive coefficients by W(x). Then W =<1 and
wW(0)=w(1)=1. The discrete portion of P, P;, alone
must solve (1) since V? and the convolution preserve a &
function in 6. We then derive an equation for W by set-
ting kK =0 in the P, equation and find

W=D3:W+w?2. 6)

By interpreting (6) as a mechanical system, we see
that for large D the only solution is W fixed at 1, the
minimum of the potential. Solutions with W < 1 become
possible for D < 1/n?, where W=1 becomes unstable and
W(x) is explicitly computable.

For DKL1, W~e —1\ND in the bulk, so there is a small
additive correction to (3) which becomes O(1) in the
boundary layers. One still expects P.=P — P, to be ex-
ponentially distributed since if one formally solves
(1—=D82)Py.=P},—P@r4 by iteration, the homo-
geneous solution is zero because P, =0 at x =0,1. There
are then no terms on the right which would make
(1—Dda2) ! singular as kK — 0 and thus we expect P. to
have a strip of analyticity in k. All of the above proper-
ties have been confirmed by solving (1) numerically with
U=0.

Our treatment of the D <1 limit can readily be gen-
eralized to include U0 in which case {(6)(r) is nontrivi-
al and obeys

U-V(6)=DV*0). 7

By making the ansatz Py (r) =e™*‘@"y,(r), a formal

iteration can be set up for y beginning from (4) with
D— D(V(0))? and with additional terms coming solely
from the curvature in (0), i.e., VX6).

An interesting generalization of (1) models the
enhanced mixing that results from stretching and folding
on the large scales as a one-dimensional map f of the in-
terval x € [0,1] onto itself that is ergodic has a positive
Liapunov exponent and 0,1 as unstable fixed points. To
generalize, we replace

P ()= AP () + (1 =) TP (7)), (B)

where the product is over all inverse images of x,
ki=@.fi Dk, and 0 <A <1. The last term in (8) re-
sults from transformation of a given realization of 6(x)
under the Frobenius-Perron operator

0'(x) =2 (8.fi" 0 (x) ©)

plus the assumption that 8(x;) are independently distri-
buted. Note that (9) properly conserves f 6dx, and the
resemblance to our treatment of diffusion.
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Suppose that we add a term k926 to (9), impose our
boundary conditions, and ask for a steady solution.
When f consists of line segments joining the points (0,0),
(4,1), (%,0), and (1,1) one finds for small x approxi-
mately

x—0.5
1 +constx x/~/x

and 0(x>0.5)=1—6(x=<0.5). [The same equation
for {6) would arise from (1) and (8) with «— D/(1 —1);
but we emphasize again that the stationary PDF has
nonzero variance only in the presence of random advec-
tion.'?] In analogy to a convection experiment, the
mean gradient is expelled from the bulk and concentrat-
ed in the boundary layers. An analysis along the lines of
(7) shows that in the center of the cell one expects ex-
ponentials of width D rather than D '/? as in (5) because
of the reduction in the local mean gradient.

Our derivation of (1) was frankly heuristic and phe-
nomenological, and since we are unable to be more sys-
tematic it is perhaps helpful to mention a model of a pas-
sive scalar on a one-dimensional lattice with spacing &
whose computer solution agrees well with (1).'3 The ad-
vection is modeled by an instantaneous interchange,
“flip,” of the current values of 6; and 6;+, with a rate
per site ~1/z, that is uniform in space and time. The
diffusion is included exactly by solving

6,9i=K‘(9,'+1+9,‘—1'—29,')+“ﬂip” (11)

0(x <0.5)—0.5= (10)

with Kk~ 1/t so as to model the eddy diffusivity. When a
mean gradient is imposed on (11) the steady-state PDF
calculated numerically is purely exponential. Note that
paradoxically the diffusion (advection) alone will give a
PDF that tends to Gaussian with a variance that de-
creases (increases) in time. If x is incorrectly taken as
the molecular diffusivity, k<< 1/7, then (11) gives a
Gaussian core and exponential tails.

It may seem paradoxical to the reader that Gaussian
distributions are so elusive within our class of models.'*
They arise from the sum of uncorrelated terms and
would appear within a closure model for the large scales
of turbulence since, in addition to the eddy damping,
there is an additive, inhomogeneous, “force” F that
maintains the scalar variance. It can be incorporated
into (1) by composing Py (z+t) with a second transfor-
mation

P ~<exp ik [0+ j;F] ])
~exp[—k2<fFfF>/2]Pk.

The Gaussian multiplying the DV? terms does not quali-
tatively alter the solution and may be dropped. The only
change to Eq. (4) is a factor exp(ck?), a=(fF [ F), so
the tails are exponential since y still has poles, and there
is a well-defined Gaussian regime for smaller fluctuations
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if 62> D(8,(6))>.

An inhomogeneous term proportional to the random
velocity times the mean gradient appears in (1) if we
separate the field 6 into its average and a fluctuation.
This F, however, is not independent of the remaining
nonlinear piece of the advection as was implicitly as-
sumed in the previous paragraph when deriving the
change in Eq. (4). A Gaussian PDF with exponential
tails has recently been seen in several fluid simulations
under conditions somewhat similar to those we have en-
visaged.'> A definitive explanation has not yet appeared.

To understand how our theory might be applied to an
experiment, it is instructive to consider the progression
from the Lorentz model to Kolmogorov turbulence.
When the dimension of the attractor is small, the proba-
bility distributions at all points in space are strongly
correlated and reflect the invariant measure in phase
space of the dynamical system. They will be neither ex-
ponential nor Gaussian. With more modes and the sca-
lar injected via the walls in, for instance, a turbulent pla-
nar Couette flow, most of the scalar variance is associat-
ed with the large scales and 6(x) may be Gaussian since
it is the sum of some reasonable number of roughly in-
dependent modes. Our model does not apply since P is
correlated on the scale of the box.

Imagine now within a Kolmogorov picture that we
high-pass filter the signal with cutoff o =Q (&, '), where
Q is the characteristic straining frequency as a function
of wave number for the turbulence. With @ intermedi-
ate between (1) and the Kolmogorov cutoff frequency,
one could imagine P decorrelated on a scale &, and apply
(1). Simultaneously, a spacial average of 8 over a region
of size & could be done but is not essential since, within a
cascade picture, the variance of 8 at a point comes from
the largest scale available which is &, after filtering.

When applied to “natural” turbulence as in Ref. 9, it
is not fruitful to attempt to estimate the various parame-
ters in (1) and (8) since the model is too idealized.
Rather, the temperature variance in the bulk should be
estimated directly and a fit made with (3) and (4).
Within our highly schematic microscopic random advec-
tion model, there is no natural physical parameter that
tunes F independently and that could create a well-
defined Gaussian regime. From visualizations performed
by directly manipulating the boundary layers,'® Gauss-
ians are associated with organized plumes which natural-
ly translate into an enhanced F.

The most telling experimental exploration of our
theory may come from ‘“artificial” turbulence prepared
either by randomly forcing a fluid back and forth
through a grid with period £ at moderate Reynold’s
number or in a long Taylor-Couette cell with a gap £ and
an axial scalar gradient. Provided there is no large-scale
flow, the Peclet number is much bigger than 1, and the
Prandtl number is not too large should one find a PDF
with a velocity-independent variance ~&d(0)/dx, and
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that fits (3) and (4) where the boundary conditions
define the gradient.

Our model illustrates a class of equations in which ex-
ponentials arise from a strip of analyticity in the
Fourier-transformed PDF. Although the mathematics is
rigorous, the physics remains obscure. The usual formu-
la for Poisson statistics as a function of a continuous
event number appears exponential for some range of pa-
rameters but ultimately is slightly steeper and with a
Fourier transform that is entire because of the factorial.
Gradient PDF’s may fall off slower than exponential'’
and their transforms have no strip of analyticity.
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