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Model of n Coupled Anharmonic Oscillators and Applications to Octahedral Molecules
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We propose an algebraic model of n coupled one-dimensional anharmonic oscillators and apply it to
the study of the stretching modes of XY octahedral molecules. We derive a new result on the theory of
discrete groups and use it within the framework of the algebraic model to provide a four-parameter fit to
the published vibrational energies of SFs, WF¢, and UFs accurate within 0.9 cm ~ I

PACS numbers: 33.10.Cs, 03.65.Fd, 33.10.Gx

One of the most interesting areas of current research eigenvalues of h are
in molecular physics is the study of the vibrational excit-

= 2_ a2
ed states of medium and large molecules. In view of the e=&+A(m*—N*), @)
considerable amount of experimental activity in this m=N,N—2,...,1or0 (N =odd oreven).
area, one needs theoretical models within which to inter- ] ) .
pret experimental data. For medium-size and large mol- Introducing the v1brat10nal. quantum number v=(N
ecules, models based directly on the solution of the —m)/2, Eq. (2) can be rewritten as
many-bgdy dlﬂ'er‘entlal Schrodinger equation with in- e=go—4A(Nv —v2) , 3)
teratomic potentials become rather cumbersome and
d.ifﬁcult to .apply. Similarly, straightforward Dunham- v=0,1, ... ,ﬂ or N—1 (N =even or odd) .
like expansions contain a large number of parameters 2 2

which cannot be determined from the few available data. The values of g, 4, and N are given in terms of g,
In this Letter we propose a model of n coupled anhar- D, and a by s=—D, —4AN=ha(2D/u)"? 44
monic oscillators, which appears to describe vibrational
stretching energies with considerable accuracy in terms
of few parameters. In constructing this model, we use
the isomorphism of the Lie algebra of U(2) with that of
the one-dimensional Morse oscillator.! The eigenstates
of the one-dimensional Schrodinger equation, hy =gy,
with a Morse potential?

= —h2a%/2u. One can immediately verify that these
are the eigenvalues of the Morse oscillator.

Consider now a molecule with n bonds. For concrete-
ness we treat here the case of XY octahedral molecules,
Fig. 1, with n=6. The model we propose is that in
which each bond i is replaced by an algebra U;(2). Thus
each bond represents a one-dimensional Morse oscillator,
with Hamiltonian h; =gy; + A4;C;, where C; is the invari-
ant operator of O;(2) with eigenvalues —4(N;v; —v?).
The bonds interact with each other with a bond-bond in-
teraction. We consider two types of bond-bond interac-
tions, C;; and M;;, that we call Casimir and Majorana
interactions, for reasons which will become apparent
below. The model Hamiltonian we consider is thus

h(p,x)=p?/2u+D[1 —exp(—ax)]?, 1)

can be put into one-to-one correspondence with the rep-
resentations of U(2) DO(2), characterized by the quan-
tum numbers |V, m), with the proviso that one takes only
the positive branch of m, i.e., m=N,N—2,...,1 0or 0
for N=odd or even (V=integer). The Morse Hamil-
tonian (1) corresponds in the U(2) basis to a simple I 2 L]

Hamiltonian, h =g+ AC, where C is the invariant H=E0+i§lA"Cf+i§infCU+i§jlijMij- (4)
operator of O(2), with eigenvalues m?2—N2 Thus, the |

The operator C;; is diagonal with matrix elements
(N, vi3N ;0| Cij | Niyvis Ny 00 =410 +0;) 2 — (v, +0;) (N + N1, (5)
while the operator M;; has both diagonal and nondiagonal matrix elements,
(N1, vis N0 | M |NsvisN 00 =uv;N;+v;N; —2v0;,
(Ni,v;+ N0 — 1M N o Njo)d = — [oj;+ D)WV =) (N, —vj+1)] 12 (6)
(Ni,vi = LNj, v+ 1 M| Niyois Ny o) = — lo; (0; + 1D (N; — 0, )(N; —v; +1)112,

Equation (6) is a generalization to n bonds of the two-bond model of Ref. 3. The operators C;; and M;; have been
called Casimir and Majorana, respectively, because of their group-theoretic properties. They are the invar-
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FIG. 1. Schematic representation of a XY octahedral mole-
cule.

iant operators of the combined algebras O;;(2) and
U;;(2) in the group lattice

0;(2)®0;(2)
U1(2)®Uj(2)/ j \Oij(Z). @)
\U,-,-(z)/

Their physical meaning can be seen from the matrix ele-
ments (5) and (6). The operators C;; describe anhar-
monic terms of the type v;v;, while the operators M;; de-
scribe interbond couplings which, in configuration space,
are of the type r;r;, where r; and r; are the displacement
vectors of bonds i and j from their equilibrium values.
In this Letter we show, by explicit calculation, that the
model Hamiltonian (4) provides a description of stretch-
ing modes of polyatomic molecules that equals or sur-
passes that of any previously considered model. In addi-
tion, we derive an important result on the theory of
discrete groups which opens the way for applications to
molecules of any symmetry.

As an example, we consider the case of XY octahe-
dral molecules. We number the bonds 1 to 6 as in Fig. 1.
It is seen from the figure that all bonds are equivalent.
Thus, we must have N; =N, 4;=A (any i), and 4;;=A'
(any i and j). In addition, we expect that off-diagonal
couplings between adjacent bonds (for example, ij =12,
14,...) are different than off-diagonal couplings be-
tween opposite bonds (for example, ij=13,...). We
thus take, for octahedral molecules,

A2=A14=A15=A16 =A23 =A25 =A26
=X34 =A35 =h36 =A4s =A46=A, (8
A3 =X =Ase=L'.

Equations (4), (5), (6), and (8) provide then a descrip-
tion of the stretching modes of octahedral molecules in
terms of four parameters, 4,4',A,A". [The value of N

can be fixed from the anharmonicity of the single bond,
using Eq. (3).] If the molecule were to have a different
symmetry, different values of the A;;’s should be used,
reflecting this symmetry.

Equations (4)-(8) do much more than just provide a
description of energy levels. For a molecule with a
definite symmetry (here the octahedral symmetry Oy),
states must be characterized by representations of the
corresponding discrete group. (For O, these are the
symmetry species A1z, Eg, Fiu, Fag, and F2,.) Any cal-
culation of vibrational levels of octahedral molecules
must impose this constraint. This is usually done by con-
structing symmetry-adapted states.® As discussed in
Ref. 4, for large molecules this construction is an ex-
tremely difficult task. However, one can use the algebra-
ic properties of the Majorana operator Mj;, i.e., that it is
the invariant operator of U;;(2), and the fact that the
representations of the unitary groups are related to those
of the permutation groups® to obtain the important
mathematical result that diagonalization of appropriate
linear combinations of the M;;’s produce states that au-
tomatically transform as representations of the appropri-
ate point group. This result, to our knowledge previously
unknown, allows one to use, in a straightforward way,
algebraic models for the description of molecules of any
symmetry. In the case discussed here, the appropriate
operators are

6 6
S=23 M, S"‘_‘_g'cijMij,
i<j

i<
Cl12TC14a=C15C16=C23=C25=C26

=C34=C35=C36=C45=Cs6=1, ()]
c13=cu=csc=0.

Diagonalization of S produces states that are representa-
tions of the permutation group of six objects, S, while
diagonalization of S’ produces states that transform as
representations of the octahedral group Oy. This result,
that at first sight appears very surprising, can be easily
verified by diagonalizing S’ and computing the charac-
ters of the representations carried by the resulting eigen-
states. In view of it, diagonalization of the Hamiltonian
appropriate to octahedral molecules,

H=Ey+AC+A'C'+1S+A'S',
(10)
6 6
c=XC, C'=XCy,
i=1 i<j
automatically produces states that transform as repre-
sentations of O.

As an example, we report in Table I the results of fits
to the published vibrational levels of 32S'°F, 184w 19,
and 2*®U'°F taken from Ref. 4. The values of the four
parameters 4,A4',A,A' (and of NV) are also shown in the
table. The three fundamental frequencies 4,, E,, and
Fy, are denoted by vy, v5, and vs, respectively. We have
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TABLE I. Comparison between calculated and observed energy levels of SF¢, WFs, and UFs.?

SF, WF, UF,
lv;vv3>  Symm Ecc Egps E.c Epe S Eos
010> E, 645.36 335 78.00| 678.20 533.52]  534.10
100> A%, 774.09] 774354 7712.14| 771210 666.37|  667.10
001> F, 948.19]  948.10 712.60| 712.40 625.72|  625.50
|020>{A1g 1288.18 1354.07| 135400 , | 1065.86| 1066.50
128948 1354:83| 1354.00 1066:33| 1066.30
1110> 1416.72 1448.25 1198.51| 1197.00
1200> 154675 1543.02 1331385
|011>{qu 1588.31| 1588.10 1387.17| 1387.10 1157.111 1156.90
j 1593.66 139021 1159.00
101> F, 1719.65| 1719.59 1482.76| 1482.80 1290.74| 1290.90
E, 1890.91] 1889.05 1422.29| 142240 , | 1249.41
1002> { A% 189091 1889.05 142222| 1422140 ° | 124944
Fzg 1896.49| 1896.53 1424:81| 1422.40 1251.19
1929.74 2028.94 1597.47
ro30>{ e 193227 030.44 1598.40
A 193246 303043 1598.42
A 2056.90 2122.45 1729.47
120> { grs 2058.08 2123118 172993
210> E, 2186.66 2217.23 1862.62
F. 2226.38| 2227.50 2060.05 1687.50| 1687.50
021> { Ex 223266 2063.67 1689.68
e 223727 2066.29 1691.33
300> A, 2317.97 2312.63 1996.46
111> {Flu 2357.14 2155.66 1820.73| 1821.00
Ey 236227 2158.44 182263
201> F, 2489.66| 2488.40 2251.65 1954.89| 1955.00
E, 2525.59 2093.28 778.67
AL 252559 2093.42 778770
012> { Fie 253421 2097.55 781.41
AL 2536.47 2099.48 782.46
E; 2536.4 2099.69 78247
Fe, 2539.33 2100.49 78327
E, 2659.96 2190.44 1913.11
102> { A% 2659.97 2190.66 191318
F,,! 266521 219293 191486
F,. 2828.14| 2827.55 2129.22 871.15
003> | Fa 283031| 284035 2134710 874.65| 1874.60
e 283931| 2839.04 213420 874.67
A 284450| 2845328 213663 876.42
N 180 200 250
A 0915 -0.289 -0.141
A -0.017 -0.068 -0.053
A -0.119 -0.078 -0.089
X +0.722 +0.008 +0.096

“All values in cm
bEstimated values not included in the fit.

reported in this table the energies of states up to three
quanta of vibration, but we can obviously calculate over-
tone and combination frequencies up to any number of
quanta. The model Hamiltonian (10) appears to de-
scribe the energy levels with good accuracy, irrespective
of the fact that the three molecules of Table I have be-
havior ranging from “local” (UFs) to “normal” (SFs).
In view of the high accuracy of the fits, we think that the
calculations reported in the table can be used safely to
predict the energies of unknown states. Comparing with
other models, we do not know, at the present time, of any
other calculation that can account, with the same num-
ber of parameters, for the observed overtone and com-
bination frequencies with better accuracy.

In conclusion, we have suggested an algebraic model
of n coupled one-dimensional anharmonic oscillators
which describes stretching vibrations of large molecules
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~!, except N which is dimensionless. Observed values taken from compilation in Ref. 4.

quite accurately. The model is based on the use of
Morse oscillators and it is thus related to the model of
Halonen and Child* and others® who have successfully
used Morse oscillator potentials for polyatomic mole-
cules. However, by making use of algebraic methods, we
solve two problems: (i) that connected with the conver-
gence of integration in Schrodinger-like pictures and,
most importantly, (ii) that connected with the construc-
tion of representations of the discrete group appropriate
to the molecule under consideration. The latter result
arises from the use of coupling operators, Majorana-type
operators, which have the appropriate transformation
properties under the discrete group (here 0;). To obtain
this result within other schemes, for example, that in
which each bond i is replaced by a force constant f(’),
and then interbond couplings f,, ) are added, is no easy
task, as discussed, for example, in Ref. 4. In this paper,
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we have applied the model to the study of octahedral
molecules, but it can be equally well applied to the study
of other molecules, for example, tetrahedral molecules,
such as methane CHy, or even more complex molecules,
such as benzene C¢Hg, polymers such as polyacetylene
(n— ), and anharmonic solids. The model can also be
used to compute intensities of infrared and Raman tran-
sitions. The corresponding results will be reported in a
longer paper.

Finally, we note that algebraic models have been used
in the past to treat structural problems of molecules.
However, they have dealt almost exclusively with har-
monic situations. The model discussed here addresses
the question of anharmonic effects. The order of magni-
tude of these effects can be seen from Table I by consid-
ering the triplet of states |002). The observed splitting is
6.48 cm ~'. The calculated splitting is 5.58 cm ~'. The
splittings increase for higher overtone and combination
bands and it is in the correct description of these bands
that the power of the algebraic method lies. This has
been demonstrated recently by detailed analysis of mole-
cules of lower symmetry.” The novel aspects of the
present Letter are, in addition to the inclusion of bond
anharmonicities, Eq. (4), and interbond couplings, Eq.

(8), (i) the discovery of operators S, Eq. (9), which al-
low a simple construction of symmetry-adapted states,
and (ii) the explicit demonstration of the accurate
description of the stretching vibrations of polyatomic
molecules that one can obtain within the framework of
algebraic models.
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