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Model of n Coupled Anharmonic Oscillators and Applications to Octahedral Molecules
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We propose an algebraic model of n coupled one-dimensional anharmonic oscillators and apply it to
the study of the stretching modes of XY6 octahedral molecules. We derive a new result on the theory of
discrete groups and use it within the framework of the algebraic model to provide a four-parameter fit to
the published vibrational energies of SF6, WF6, and UF6 accurate within 0.9 cm

PACS numbers: 33.10.CS, 03.65.Fd, 33.10.Gx

One of the most interesting areas of current research
in molecular physics is the study of the vibrational excit-
ed states of medium and large molecules. In view of the
considerable amount of experimental activity in this
area, one needs theoretical models within which to inter-
pret experimental data. For medium-size and large mol-
ecules, models based directly on the solution of the
many-body diA'erential Schrodinger equation with in-

teratomic potentials become rather cumbersome and
difficult to apply. Similarly, straightforward Dunham-
like expansions contain a large number of parameters
which cannot be determined from the few available data.
In this Letter we propose a model of n coupled anhar-
monic oscillators, which appears to describe vibrational
stretching energies with considerable accuracy in terms
of few parameters. In constructing this model, we use
the isomorphism of the Lie algebra of U(2) with that of
the one-dimensional Morse oscillator. ' The eigenstates
of the one-dimensional Schrodinger equation, by=stir,
with a Morse potential

h(p, x) -p'/2p+D[1 —exp( —ax)]',

can be put into one-to-one correspondence with the rep-
resentations of U(2) &O(2), characterized by the quan-
tum numbers ~N, m), with the proviso that one takes only
the positive branch of m, i.e., m =N, N —2, . . . , 1 or 0
for N =odd or even (N =integer). The Morse Hamil-
tonian (I) corresponds in the U(2) basis to a simple
Hamiltonian, h =op+AC, where C is the invariant
operator of O(2), with eigenvalues m N. Thus, the—

eigenvalues of h are

e =op+A (m N), —

m =N, N —2, . . . , 1 or 0 (N =odd or even) .

(2)

Introducing the vibrational quantum number v = (N
—m)/2, Eq. (2) can be rewritten as

e=sp —4A(Nv —v ),
N —1

v =0, 1, . . . ,
—or (N =even or odd) .

(3)

H=Ep+ g A;C;+ g A~tCt+ g k;, Mt .
i=1 i&j i&j

The operator C;J is diagonal with matrix elements

(4)

The values of ep, A, and N are given in terms of p,
D, and a by op= —D, —4AN=ha(2D/p)'t, 4A
= —6 a /2p. One can immediately verify that these
are the eigenvalues of the Morse oscillator.

Consider now a molecule with n bonds. For concrete-
ness we treat here the case of XY6 octahedral molecules,
Fig. 1, with n =6. The model we propose is that in
which each bond i is replaced by an algebra U;(2). Thus
each bond represents a one-dimensional Morse oscillator,
with Hamiltonian h; =op;+A;C;, where C; is the invari-
ant operator of 0;(2) with eigenvalues 4(N;v; —v;~). —
The bonds interact with each other with a bond-bond in-
teraction. We consider two types of bond-bond interac-
tions, C;j and M;j, that we call Casimir and Majorana
interactions, for reasons which will become apparent
below. The model Hamiltonian we consider is thus

(N;, v;;Nt, vz.
i C~z i N;, v;;NJ, vt ) =4 [(v; + vi. ) (v; + vi ) (N; +Nt )],

while the operator M;~ has both diagonal and nondiagonal matrix elements,

(N;, v;;Nt, vt ~M,& (N;, v;;Nz, vt) =v;Nj+ AN; —2v;vl,

(N;, v;+1;Nt, v&
—1~M;, ~N;, v;;Nj, vt) = —[v.t(v;+1)(N; —v;)(Nt —

v, +1)]'
(N;, v; —I.„Nt. , vj+ I ~Mp ~N;, v;;N, v ) = —[v;(v +1)(N, —v, )(N; —v;+1)] 't'.

Fquation (6) is a generalization to n bonds of the two-bond model of Ref. 3. The operators C;~ and M;, have been
called Casimir and Majorana, respectively, because of their group-theoretic properties. They are the invar-
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TABLE I. Comparison between calculated and observed energy levels of SF6, WF6, and UF6. "'

ivv2v& Symm E „ E „ E~ic

1010& E
I 100& A,
I001& Fiu

l020&
Eg

I 110& E
l200& A,

I01 1& iu
F2u

I101& F,u

Eg
I002& ) A,

, F2g

l030& A, g

Eg

A2g

ll20& I «
Eg

l210& Eg

1021& F+„
lu

l300& A,

I 111& iuF
2u

l201 & Fiu
E

F
Ai

I012& Aig

E 2g

. F2g
E

1102& Ai
F2g

F,
1003&

lu. A2u

645.36
774.09
948.19

1288.18
1289.48
1416.72
1546.75
1588.31
1593.66
1719.65
1890.91
1890.91
1896.49
1929.74
1932.27
1932.46
2056.90
2058.08
2186.66
2226.38
2232.66
2237.27
2317.97
2357.14
2362.27
2489.66
2525.59
2525.59
2534.21
2536.47
2536.48
2539.33
2659.96
2659.97
2665.21
2828.14
2839.31
2839.31
2844.90

643.35
774.54
948.10

1588.10

1719.59
1889.05
1889.05
1896.53

2227.50

2488.40

2827.55
2840.35
2839.04
2845.28

678.00
772.14
712.60

1354.07
1354.83
1448.25
1543.02
1387.17
1390.21
1482.76
1422.29
1422.42
1424.81
2028.94
2030.44
2030.53
2122.45
2123.18
2217.23
2060.05
2063.67
2066.29
2312.63
2155.66
2158.44
2251.65
2093.28
2093.42
2097.55
2099.48
2099.69
2100.49
2190.44
2190.66
2192.93
2129.22
2134.10
2134.20
2136.63

678.20
772.10
712.40

1354.00,
1354.00 '

1387.10

1482.80
1422.40,
1422.40 '„
1422.40 "

533.52
666.37
625.72

1065.86
1066.33
1198.51
1331.85
1157.11
1159.00
1290.74
1249.41
1249.44
1251.19
1597.47
1598.40
1598.42
1729.47
1729.93
1862.62
1687.50
1689.68
1691.33
1996.46
1820.73
1822.63
1954.89
1778.67
1778.70
1781.41
1782.46
1782.47
1783.27
1913.11
1913.18
1914.86
1871.15
1874.65
1874.67
1876.42

534.10
667.10
625.50

1066.50
1066.30
1197.00

1156.90

1290.90

1687.50

1821.00

1955.00

1874.60

N
A
A'

180
-0.915
-0.017
-0.119
+0.722

200
-0.289
-0.068
-0.078
+0.008

250
-0.141
-0.053
-0.089
+0.096

'

All values in cm, except N which is dimensionless. Observed values taken from compilation in Ref. 4.
Estimated values not included in the fit.

reported in this table the energies of states up to three
quanta of vibration, but we can obviously calculate over-
tone and combination frequencies up to any number of
quanta. The model Hamiltonian (10) appears to de-
scribe the energy levels with good accuracy, irrespective
of the fact that the three molecules of Table I have be-
havior ranging from "local" (UF6) to "normal" (SF6).
In view of the high accuracy of the Ats, we think that the
calculations reported in the table can be used safely to
predict the energies of unknown states. Comparing with
other models, we do not know, at the present time, of any
other calculation that can account, with the same num-
ber of parameters, for the observed overtone and com-
bination frequencies with better accuracy.

In conclusion, we have suggested an algebraic model
of n coupled one-dimensional an harmonic oscillators
which describes stretching vibrations of large molecules
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quite accurately. The model is based on the use of
Morse oscillators and it is thus related to the model of
Halonen and Child and others who have successfully
used Morse oscillator potentials for polyatomic mole-
cules. However, by making use of algebraic methods, we
solve two problems: (i) that connected with the conver-
gence of integration in Schrodinger-like pictures and,
most importantly, (ii) that connected with the construc-
tion of representations of the discrete group appropriate
to the molecule under consideration. The latter result
arises from the use of coupling operators, Majorana-type
operators, which have the appropriate transformation
properties under the discrete group (here Oq). To obtain
this result within other schemes, for example, that in
which each bond i is replaced by a force constant f t'~,

and then interbond couplings f„„'~ are added, is no easy
task, as discussed, for example, in Ref. 4. In this paper,
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we have applied the model to the study of octahedral
molecules, but it can be equally well applied to the study
of other molecules, for example, tetrahedral molecules,
such as methane CH4, or even more complex molecules,
such as benzene C6H6, polymers such as polyacetylene
(n ~), and anharmonic solids. The model can also be
used to compute intensities of infrared and Raman tran-
sitions. The corresponding results will be reported in a
longer paper.

Finally, we note that algebraic models have been used

in the past to treat structural problems of molecules.
However, they have dealt almost exclusively with har-
monic situations. The model discussed here addresses
the question of anharmonic eA'ects. The order of magni-
tude of these effects can be seen from Table I by consid-

ering the triplet of states ~002). The observed splitting is

6.48 cm '. The calculated splitting is 5.58 cm '. The
splittings increase for higher overtone and combination
bands and it is in the correct description of these bands
that the power of the algebraic method lies. This has

been demonstrated recently by detailed analysis of mole-

cules of lower symmetry. The novel aspects of the
present Letter are, in addition to the inclusion of bond
anharmonicities, Eq. (4), and interbond couplings, Eq.

(8), (i) the discovery of operators S, Eq. (9), which al-
low a simple construction of symmetry-adapted states,
and (ii) the explicit demonstration of the accurate
description of the stretching vibrations of polyatomic
molecules that one can obtain within the framework of
algebraic models.
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