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I =0, I = I Quasibound State in the gNN-xNN Coupled System
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The existence of an I =0, J =1 quasibound state in the gNN-zrNN coupled system is theoretically
predicted with a mass of about 2430 MeV and a width 10-20 MeV. The three-body equation for the
zNN-nNN coupled system is solved. The primary two-body interactions generating the bound state are
(1) the NN interaction in the 'S~ 'D~ stat-e and (2) the trN and rtN coupled interaction in the S~~ state.
A remarkable enhancement of the elastic cross section of g-d scattering near the gd threshold is found,
whose origin is in the pole structure of the I =0, I =1 gd scattering amplitude on the complex energy
plane.

PACS numbers: 14.20.Pt, 11.80.Jy, 13.75.—n, 25.80.Hp

The possibility of the existence of zNN bound states
has been suggested by many people. Since strong attrac-
tion due to the zN interaction in the P33 state and the
NN interaction in the S& state exists in the system, a
bound state has been expected there. However, the large
centrifugal repulsion in the P33 resonance makes it
dificult for the system to be bound. Therefore, rather
than a bound state, resonance states exist in the zNN
system. J =2+ and J = 3 resonances are theoretical-
ly predicted, in agreement with the experimental data. '

In turn, the qNN system has different properties from
the zNN system. In this system the important interac-
tions are the gN-xN interaction in the Sll state and the
NN interaction in the S &

state. Namely, both interac-
tions are of the S-wave nature, giving no centrifugal
repulsion, and providing a greater possibility for a bound
gNN state. One motivation for this work is to explore
this possibility.

Another motivation is that the interest of nuclear
physicists in "GeV pion physics" beyond the h, -resonance
region has recently been enhanced. In this context the
g-nucleus interaction is an interesting theme. Already
g-nucleus bound states have been discussed in the frame-
work of the g-nucleus optical potential. ' Bound states
with 4 ~ 12 are predicted. Furthermore, pioneering
experimental results have also been presented about
g-few-nucleon systems. '4, 5

In nuclear many-body systems with A))2, the com-
plex nuclear-medium eA'ects are essentially important.
In contrast with this, the problem can be more exactly
investigated in the gNN system within the framework of
the three-body formalism. This paper reports results just
from this three-body approach.

Since the Sl l resonance couples both to the zN and
gN channels, the gNN system couples necessarily to the
zNN system. A method of treating the coupled plural
three-body system has been developed by the present au-
thor and others. The method has been applied to
AN-pNN, NNN-NNh, -zdN, and other systems.

The three-body equation for the amplitude L,~ is writ-

X p Z p+gZ pzp A p

where Z ~ is the particle-rearrangement term between
the particle channels a and P, while r„, is the propaga-
tion term of the system with a spectator particle and an
interacting pair in the intermediate channel. Equation
(1) is the integral equation where the variable is the rel-
ative momentum between the spectator particle and the
interacting pair. Z and z have the standard form of
three-body theory and are about the same as those in
Ref. 6. They are given by the form factors of separable
input potentials and the free three-body Green functions
(see Fig. 1).

In Table I the particle channels and the locations of
the nonvanishing matrix elements for Z and z are given.

In this paper we concentrate on the I =0, J =1
state of the gNN +NN coupled system. Then the
angular-momentum channels as shown in Table II are
taken into account. Of course, Eq. (1) could give the
amplitudes for all the processes of the system. Among
these we calculate the gd scattering amplitudes.

The input two-body interactions involve the zN poten-
tial in the Pll state, the NN potential in the Sl- Dl
state, and zN-gN potential in the Sli state. One notes
that the P33 zN and the 'So NN potentials do not work
in the present three-body state for the sake of the isospin
in variance.

For the Pl 1 xN potential the nucleon pole part is taken

+ $TT + 1 + ~ ~ ~

FIG. 1. The graphical representation of the first, the second,
and one of the third terms in the perturbation series due to Eq.
(1) for the qd r)d amplitude. The solid and dotted lines in-
dicate the nucleon and the mesons, respectively, while the
solid+dotted lines represent the interacting pair in the Sll or
Pl l state.
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TABLE I. The particle channel and the locations of nonvanishing Z and r matrix elements.
The interacting pairs in the particle channel are in parentheses.

Channel (N 7 1r)N 1 (N ] Jr )N 1 (N 1 N Q ) lr (N 1 g )N 1 (N I 11)N 2 (N 1 N $ )11

(Np1r)N1
(N, ~)N&
(N1N1) 1r

(N)11)N1
(N111)N)
(N1N1) 11

Z
Z

Z

Z

Z
Z
T

Z
Z

Z

Z

Z
Z

g.(p)g.(p') g.(p)g„(p')
g„(p)g„(p') g„(p)g„(p') (2)

where p and p' are the magnitudes of the final and initial
relative momenta, respectively. The form factors have
the parametrization

gII P( )= (3)

C„
g„(p) =, ", 1+a

p 2+p2 p 2+ p2
(4)

into account. So, the NN channel is involved as
(n+N)1v ~1,+N, namely, channel 1 in Table II. The
Roper resonance is ignored. Since this resonance does
not couple with the gN channel, the effect of the Roper
resonance is negligible in the present problem. For the
St- D~ NN potential one employs two potentials: One

comes from the deuteron wave function due to the
Ueda-Green one-boson-exchange potential' and the oth-
er from the np scattering data of Phillips. "

For the S~~ nN and gN interaction the potential is

V (p,p') V „(p,p')

VI1 (p,p ) VI1I1(p,p )

MeV) is fully involved (see Fig. 2). The parameter
values for the S~~ potential are as follows: C =0.7
fm ', P, =440 MeV, C„=10.0 fm ', P1=Pq =1900
MeV in common for sets I and II, while a =1.02 and
1.05 for sets I and II, respectively.

The S~ ~ resonance couples to the zN, qN, and zzN
channels with branching ratios of 50:45:10to 35:55:10.'
The present two-channel parametrization yields the zN-
xN and xN-qN cross sections in the ratio of 50:43 at
Js =1510 MeV and 35:51 at Js =1541 MeV, in ap-
proximate agreement with the experimental data. On
the other hand, the total cross section due to set II is
larger than that due to set I by about 10%. Therefore
the error due to the neglect of the zzN channel in the
present parametrization can be estimated by observing
the difference between the two results of the three-body
calculations when sets I and II are used.

I set up three models for the three-body calculation:
Models I and II employ set I and II parametrizations for
the S~ ~ potential, respectively, while both models use the
Ueda-Green interaction for the Sl,- D

~ potential. Mod-
el III employs set I for the S~ ~ potential and the Phillips
parametrization for the S~- D~ potential.

The results for the gd scattering amplitudes of the
I =0, J =1 state are displayed in Fig. 3. The Argand

Two sets of the parameters are obtained: One is made
by fitting the xN scattering amplitude derived in the
analysis by Amdt, Ford, and Roper' and the other by
fitting that from the Karlsruhe-Helsinki group. ' Both
sets are fitted to the respective amplitudes up to the in-

cident pion energy T, ~ 670 MeV, or Js ~ 1556 MeV,
the energy region where the 511 resonance (Js =1535
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TABLE II. The angular-momentum channels for the I =0,
J =1 state. The heading second row indicates the quantum
numbers of the interacting pair. S3 and L3 represent the total
spin and the orbital angular momentum, respectively, possessed

by the interacting pair and the spectator.
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FIG. 2. The zN amplitudes by set I parametrization and by
Amdt, Ford, and Roper (Ref. 12) are represented by the solid

and dashed curves, respectively. The upper and lower parts
show the real and imaginary parts of the amplitudes, respec-
tively. The arrows represent the thresholds. The abscissa rep-
resents the incident-pion kinetic energy in the laboratory sys-
tem.
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FIG. 3. (I) The Argand plots of the model I amplitude.
The solid and dashed curves indicate the cases with channels 2
and 4 and channels 2, 3, and 4, respectively. (II), (III) The
model II and III amplitudes are represented by the solid
curves. Both employ channels 2 and 4. The circles indicate
the energy points E„=—l, 0, 5, 10, 20, 30, 40, 50, 100, 200,
and 300 MeV. The Sll Ã threshold is at E„=45 MeV for the
Sll mass 1535 MeV.

plots of the T-matrix amplitudes are shown as a function
of the energy E„. The T matrix is obtained by multiply-
ing the matrix X,p for the initial and final gd channels
by the magnitude of the gd relative momentum and is
related to the S matrix by S=1—iT. The energy vari-
able E„represents the total energy minus the gNN
threshold energy 2430 MeV. The g-d threshold locates
at E„=—2.225 MeV, namely, the negative of the deu-
teron binding energy.

First, the contributions of each channel to the ampli-
tudes are explained. The important contributions come
from channels 2 and 4 in Table II. These two channels
make the major contribution to the characteristic feature
of the amplitudes. The contribution of channel 3 is ap-
preciable as is seen in the comparison of the cases with
and without channel 3 in Fig. 3 (I). Furthermore, the
contributions of channels 1 and 5 have been confirmed to
be very small. Therefore, the results of the calculations
with just channels 2 and 4 or channels 2, 3, and 4 are
displayed in Fig. 3.

The gd scattering amplitudes of the I=0, J = 1

state have a very surprising feature in the energy region
from the rINN threshold (E„=O) through the S i i-
resonance production energy (E„=45 MeV). The Ar-
gand plots of the amplitudes of the three models all indi-
cate anticlockwise looping behavior. This suggests the
existence of a resonance or bound state of the gNN-zNN
system. This looping behavior is common to all three
models, irrespective of the two-body input interactions
for the S~- D~ as well as the S~~ channels. One also
understands that the neglect of the zzN channel in the
nN-gN potential does not matter to the looping behavior
in the comparison of the two results from models I and
II.

The analytic structure of the amplitude of model III
on the complex energy plane has been investigated. A
pole structure is observed near the gd threshold on the
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FIG. 4. The elastic and inelastic cross sections for gd
scattering due to model I with channels 2 and 4 are indicated
by the solid and the dashed curves, respectively. The arrows
indicate the thresholds.

second Riemann sheet with respect to the gNN and gd
cuts. The real part of the pole position is ReE„=—2.0
MeV, or a little less than this value, and the imaginary
part is ImE„= —10 MeV. A similar pole structure is
also inferred for the amplitudes of models I and II, since
the behavior of these is similar to that of model III on
the real energies.

Figure 4 shows the elastic and inelastic cross sections
for g-d scattering. One notes the strong enhancement of
the elastic cross section at E„=—2,225 MeV. This
should tend to a constant when E„—2.225 MeV. On
the other hand, the inelastic cross section has a behavior
like p, where p is the magnitude of the relative
momentum between g and d. Observing the shape of the
enhanced elastic cross section and also taking into ac-
count the pole position, one judges that the quasibound
state is located at about Js =2430 MeV with a width of
10-20 MeV. The decay width to NN is much smaller
than this, since the eA'ect of channel 1, the 'P

j NN chan-
nel, is very small. The matrix element for a transition to
channel 1 by pion rearrangement is small due to its P-
wave form factor and relatively large energy denomina-
tor.

One obtains the scattering lengths as

a = —1.69 —2.20i, —1.11 —2.91i, —1.84 —2.47i,

(5)

in units of fm for models I, II, and III, respectively.
I remark here that the most important origin for bind-

ing of the gN¹ NN system arises from the mechanism
of nucleon rearrangement with S~ ~ gN, and S~ NN in-
teractions in the initial and final two-body channels. The
Z term for this mechanism becomes very large at the
gNN threshold, since the energy denominator becomes
very small, while the numerator factors g„(p) of the S
waves are large there.

The present result of the existence of a quasibound
state in the gNN-AN system is rather surprising from
the viewpoint of the optical-potential approach to the
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A »2 systems, where A ~ 12 is the condition for the ex-
istence of bound states. However, this bound-state con-
dition is not valid for the g-few-nucleon system. Furth-
ermore, in the A »2 systems Si i gW vertex efI'ects are
suppressed by the Pauli blocking effect. However, this
vertex makes very important contributions to the quasi-
bound state of the @AN-x2VW system. Thus the bound-
state problem for the g-few-nucleon system is beyond
the scope of the optical-potential approach.

The present result cannot be reached from any low-
order perturbation calculation. The fifth-order term is
still in the same order of magnitude as the first. Even
the eleventh is about one-tenth of the first.

Since one observes a pole structure associated with the
enhancement of the amplitude at gd threshold, the am-
plitudes for all the processes of the system should have
an enhancement there. Therefore the quasibound state
can be investigated experimentally through the reactions
yd rid (Tr=633 MeV), np rid (T~ =1260 MeV),
rrd (t)d)rr (T =590 MeV), np np (T„=1260
MeV), pd (rid)p (Td =1800 MeV), etc. , where the
energies in parentheses indicate the incident kinetic ener-
gies in the laboratory system.

Finally, I remark about the result when an 5~ i g% po-
tential with resonance energy about 10 MeV deeper than
that of set I is used. In this case the resulting gd scatter-
ing amplitude has a clockwise looping behavior. Then
the gd phase shift begins from 180' at the TId threshold
and goes down with increasing energy. The pole is found
at E„=1.27 —0.90i MeV in the first and second
Riemann sheets with respect to the gd and pe cuts, re-

spectively. '

In conclusion, I find an I=O, J =1 quasibound
state near the rid threshold (Js =2430 MeV) with a
width of about 10-20 MeV in a calculation of the cou-
pled g%%-zWW system.
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