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Calculations of the screened electron self-energy are carried out in local central potentials that ap-
proximate a Hartree-Fock potential. The resulting energy corrections are combined with screened
vacuum-polarization calculations and used to predict the Lamb shift for n =2 states of lithiumlike urani-
um, n =3 states of sodiumlike platinum, and n =4 states of copperlike gold. The theoretical values of
the screened Lamb shift are found to be in good agreement with values inferred from experiments.
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An outstanding problem in atomic physics is the
correct treatment of relativistic and quantum electro-
dynamic (QED) effects in many-electron atoms. In neu-
tral atoms, with the exception of hydrogen and helium,
the large numerical uncertainties accompanying the solu-
tion of the Schrédinger equation obscure these normally
small effects. However, the study of the spectroscopy of
highly charged ions allows the investigation of this fun-
damental problem in a particularly clear fashion. This
is, first, because of the great enhancement of these ef-
fects as the nuclear charge grows: The hydrogenic Lamb
shift, for example, scales as Z* Second, the conver-
gence of a particular technique of solving the Schro-
dinger equation, relativistic many-body perturbation
theory (MBPT), becomes very rapid because each higher
order of MBPT is accompanied by an additional factor
1/Z. 1t has recently been shown that for highly charged
jons of the lithium,' sodium,? and copper? isoelectronic
sequences, QED corrections to valence electron energies
can be unambiguously isolated by comparing experimen-
tal transition energies with the results of MBPT, which
include the effects of the Coulomb and Breit interactions
but omit the QED corrections. These corrections are
dominated by the Feynman graphs of Fig. 1, which de-
scribe the point-Coulomb Lamb shift when the electron
moves in the Coulomb field of a point nucleus of charge
Z. However, this shift is larger than the actual QED
correction, which we refer to as the screened Lamb shift.
Although the resulting experimental values of the
screened Lamb shift can be accounted for phenomeno-
logically*® using various modifications of the point-
Coulomb Lamb-shift data,”? it is necessary to calculate
the QED corrections from first principles to obtain an
understanding of the Lamb shift at a fundamental level.

Our point of departure is a perturbation expansion of
the QED S matrix in the Furry® representation, with the
nuclear Coulomb potential replaced by a suitable atomic
potential V' (r). This expansion contains the Coulomb
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and Breit interaction terms of the relativistic MBPT ex-
pansion, together with other terms of field-theoretic ori-
gin, not included in MBPT.'? The lowest-order terms
not included in MBPT are the electron self-energy and
vacuum-polarization corrections shown in Figs. 1(a) and
1(b), with the electron propagator now describing an
electron moving in a non-Coulomb potential V'(r). We
refer to these corrections as the screened self-energy and
screened vacuum polarization, respectively. While we
will show in this Letter that these graphs account for the
bulk of the screened Lamb shift, we note that there are
also contributions from higher-order graphs, which will
be discussed at the end of the Letter.

Our calculations of the self-energy in a non-Coulomb
potential are based on a method introduced by Brown,
Langer, and Schaefer!! to treat the electron self-energy
numerically, and used by others'?"!® to study self-energy
corrections for 1s electrons in the strong Coulomb fields
of high-Z nuclei. This method is generalized here to
treat electronic states with principal quantum numbers
n>1.

While MBPT calculations for the ions considered here
were carried out starting with a ¥ ~! Hartree-Fock
(HF) potential, the QED calculations assume a local po-
tential. In the present work we use local potentials that
give eigenenergies close to HF values. Specifically, we
use both an HF potential with Kohn-Sham average ex-
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FIG. 1. Self energy and vacuum-polarization graphs. The
double line indicates propagation of the electron in an external
potential V' (r).
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change interaction, and a Hartree-like potential defined
by

V() =V () + X (2j,+ Doola,air) (1)
where
vo(a,a:r)-Efdr'L[g,,z(r') +£2(r")]. )
r>

The core states a are determined self-consistently. Note
that we include the effect of finite nuclear size on V,c(r)
by modeling the nucleus as a uniformly charged sphere,
using the nuclear radii given in Ref. 8. We found that
both potentials gave the same value for the screened
Lamb shift to within numerical errors.

An important point of principle is whether QED cal-
culations in non-HF potentials can be consistently joined
with the MBPT results calculated starting from the HF
potential. To address this point, we note that MBPT ex-
pansions for highly charged ions based on local poten-
tials close to a HF potential converge rapidly to the same
limit as those based on a HF potential. We have explic-
itly checked this by carrying out a MBPT calculation
through second order for the local potentials used in this
work. As expected, the first-order energy correction
brings the local potential energies into very close agree-
ment with the HF energies, and the second-order calcu-
lation leads to almost exact agreement between the two
MBPT calculations.

The formulas for the self-energy calculation are writ-
ten out in the literature'"™'> and will not be repeated
here, but we will remark on some numerical issues. The
calculation involves a rotation of the contour of the
fourth component of the photon momentum k¢ from the
real to the imaginary axis, ko— iw. An integral over w
from zero to infinity must be evaluated. The integrand
involves two radial integrals over wave functions and
electron Green’s functions, which are represented as an
infinite partial-wave expansion. In practice this expan-
sion and the w integral can be carried out only to a finite
number of partial waves and a given energy, respectively,
and extrapolation methods must be used to complete the
calculation. The errors involved in these methods were
sufficiently severe in earlier work to limit the application
of the technique to n =1 states.

In order to extend this method to states of higher prin-
cipal quantum number, we first made use of a very fine
radial grid. We found that a 4000-point grid allowed the
stable generation of the partial-wave expansion of the

v = -2 [ 42 —Bﬂf dr (s 1)'/2[ +

electron Green’s function up to / =120, as opposed to the
limit of about 20 in earlier work. While this enabled
greater accuracy in extrapolating the partial-wave ex-
pansion to infinity, its slow falloff as 1//2 still led to
significant numerical uncertainties. Therefore, we calcu-
lated for the Coulomb case the asymptotic behavior of
the w integrand for large /, which had the remarkably
simple, w-independent form — (mZa/n)/I%. Extrapolat-
ing with forms that tended to this limit led to a great in-
crease in accuracy. For the non-Coulomb case, we did
not obtain an analytic formula, but used the fact that the
1/1? coefficient was again o independent, and that at low
energies this coefficient could be obtained from a numer-
ical fit with high accuracy. The maximum energy that
could be calculated with good accuracy for the ions con-
sidered in this work was about 5mc? for n=2 states,
3mc? for n=3 states, and 2mc? for n =4 states. Past
those limits 120 partial waves were still nonasymptotic,
and control over the partial-wave expansion began to de-
grade.

The next issue we treated was the accurate evaluation
of the w integration. The integral up to the limits given
above could be evaluated with very high accuracy. This
was done by dividing the range of integration into sev-
eral regions, and evaluating the integral in each with
more and more Gaussian points until convergence was
achieved. The integration from those limits up to
infinity, which we refer to as the tail, was by far the
dominant source of numerical error, as in previous work.
This is because the numerical control of the partial-wave
expansion is poorest at the highest-energy points that are
used to form a fit to the large-w behavior, which is then
extrapolated to infinity to carry out the tail integration.
The procedure we used was to fit with various functions
of w (the leading behavior is 1/w?), using values of the
integrand at the highest possible w. Errors were estimat-
ed from the spread in values of the tail arising from use
of different functions. A useful cross-check was ensuring
we reproduced within errors the known results for the
point-Coulomb case, which have recently been calculated
for the n=3 and n=4 levels.'®'” The results for the
screened self-energy calculation are presented in Table I.

Turning now to the calculation of vacuum polarization
in a non-Coulomb potential, we note that this effect is
dominated by the Uehling potential. Therefore, we in-
corporate screening in this potential only, leaving the
screening corrections to the higher-order terms of the
Wichmann-Kroll'® expression, which are already quite
small, for a later work. The Uehling potential for a dis-
tributed charge density p(r) is

1 —2(me/h)t|r—x|
— e . 3)
24 ]

The density p(r) has contributions from the nuclear charge distribution and from the core electrons. We carry out the
angular integrations analytically, the ¢ integration using adaptive Gaussian quadrature, and we evaluate the remaining
radial integral with standard numerical techniques. The vacuum-polarization contributions determined numerically
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TABLE 1. Screened Lamb shift contributions. Self-energy and vacuum polarization are
from the present calculation: L. sums the Wichmann-Kroll, higher-order, and relativistic-

recoil contributions from Ref. 8. Units are a.u.

Vacuum
Ion State Self-energy polarization Les L
ust 2812 2.303(2) —0.579 0.031(5) 1.755(5)
ust 2pis 0.316(2) —0.096 0.007(1) 0.227(2)
pto7+ 3512 0.290(3) —0.056 0.003 0.237(3)
pPto7* 3pin 0.039(2) 0.000 0.000 0.039(2)
Au’0t 4512 0.088(1) —0.017 0.001 0.072(1)
Au0t 4pss 0.013(1) 0.000 0.000 0.013(1)

from the Uehling potential are listed in Table I.

We are now in a position to compare theory with ex-
periment. A compilation of the various QED contribu-
tions to n =1 and n =2 states has been given in Table II
of Ref. 8, which lists various contributions to the Lamb
shift for hydrogenlike atoms. The first two are the
Coulomb self-energy and its finite-size corrections: The
sum of these two is to be replaced by our self-energy cal-
culation, which accounts both for screening and for finite
nuclear size. The next two contributions are the Cou-
lomb Uehling potential and its finite-size corrections:
Again, these are to be replaced with our screened Uehl-
ing calculation. The remaining four contributions are
Wichmann-Kroll corrections, an estimate of higher-order
terms, finite size of the nucleus, and relativistic recoil.
The finite-nuclear-size contribution is already included
in MBPT; the other three are summed and listed as re-
sidual effects, L, in Table I. For n =3 and n =4 states,
we assume 1/n3 scaling to determine these effects. The
sum of our screened self-energy, screened vacuum polar-
ization, and residual effects is our basic result, and is
given as Ly, in Table 1.

For lithiumlike uranium (U%™), the measured 2p,/»-
251/, transition energy'® is 280.59 £0.10 eV. When the
non-QED value of 322.24 eV [which includes 322.37 eV
from MBPT (Ref. 20) and —0.13 eV from nuclear polar-
ization'] is subtracted from this measurement, an ex-
perimental value Lexy=—41.65%0.10 eV is found.
The energy of the 3ps/-3s,/2 transition in sodiumlike
platinum (Pt®’") has been measured to be 653.44 +0.07
eV,?? and the corresponding value from MBPT is 658.76
eV,? leading to an experimental value of the Lamb shift
Lexpt=—5.32£0.07 eV. For copperlike gold (Au’t)
the experimental 4p;/-4s;/; transition energy is 253.40
+0.08 eV, and the theoretical energy is 254.98 + 0.01

eV,’ leading to an experimental Lamb shift Ly
=—1.58+0.09 eV. We compare these numbers to our
theoretical values in Table II.

There has been a calculation on lithiumlike uranium
by Indelicato and Mohr?* that is closely related to the
present one. To compare with this calculation we redid
our self-energy calculation assuming a point nucleus with
and without screening. The difference corresponds to the
terms 2E 51" and 2E3}® in Ref. 24. We find reasonable
agreement, —2.82(5) eV and —0.94(19) eV, compared
to —2.88 eV and —0.64 eV from Ref. 24. We note that
when we compared our two screened calculations with
and without nuclear size, we found a distinctly smaller
nuclear-size effect than that given in Ref. 8; specifically,
0.6 eV versus 1.0 eV.

The agreement with experiment found here is quite
good, - particularly for uranium. However, a set of
higher-order Feynman graphs must be considered before
one can claim a fundamental understanding of these
transitions. As mentioned above, Furry-representation
QED provides a rigorous theoretical framework for cal-
culating the spectrum of highly charged ions, justifying
the use of MBPT and providing an unambiguous set of
Feynman graphs associated with the Lamb shift. We
have evaluated the most important such graphs, the
self-energy and the vacuum polarization. Two examples
of graphs that we have omitted are shown in Fig. 2. The
evaluation of these graphs involve the same sort of tech-
nology used here, but a complete evaluation of them has
not been made at the present time. However, a part of
Fig. 2(a) corresponding to the screening of the 1s self-
energy by the outer 2s and 2p electrons has been evalu-
ated in Ref. 24 for lithiumlike uranium, where a 0.3-eV
contribution to the 2s-2p shift was found. Because we
already have agreement between theory and experiment

TABLE II. Comparison of experiment with theory. Units are eV.

Ion Transition Expt. MBPT Lexpt L
|OASRs 2p1/2-28172 280.59(10) 322.24 —41.65(10) —41.57(15)
Pto7+ 3p3p2-3s12 653.44(7) 658.76 -5.32(7) —5.41(12)
Au’0* 4p32-4s1/2 253.40(8) 254.98(1) —1.58(9) —1.61(4)
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FIG. 2. Sample higher-order graphs contributing to the
screened Lamb shift.

at below this level, this is an indication that significant
cancellations are to be expected in the complete calcula-
tion. The next stage of research in this problem must
focus on verifying this conclusion. Until those large-
scale calculations are carried out, we simply observe that
evaluating the Lamb shift in realistic potentials, coupled
with high-accuracy MBPT calculations, gives very good
agreement with experiment. If it can be shown that the
remaining graphs are indeed small, the relativistic
many-body problem will have been shown to be under-
stood at the tenth of an eV level in highly charged ions.
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