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Construction of Multifractal Measures in Dynamical Systems from Their Invariance Properties
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We show that multifractal measures arising from the symbolic dynamics of chaotic systems can be
reproduced using iterated-function systems involving Mobius maps. This powerful approximation
scheme is exact for hyperbolic billiards: The coding measures of zero-angle ¹ided polygonal billiards
are exactly rendered by N —

1 Mobius maps. We also approximate with success the coding measures for
the anisotropic Kepler system.

PACS numbers: 02.60.+y, 02.20.+b, 03.20.+i, 05.45.+b

In two important works, Gutzwiller' has introduced
and studied multifractal measures which arise in the
coding of chaotic dynamical systems. These measures
provide full information on the motion of the system un-
der consideration, describe its phase-space structure, and
play an important role in classical and semiclassical aver-
ages. ' It is desirable to have a transparent construction
of these dynamical measures, which, for instance, would
allow a fast determination of periodic trajectories. In
this Letter, we show that this goal can be achieved with-
in the formalism of iterated-function systems (IFS), in
an exact (in the case of hyperbolic billiards ) or approxi-
mate form (for the anisotropic Kepler motion ).

To start with, let us consider the Series -Gutzwiller
example of geodesic motion in a singular triangle T in
the hyperbolic upper half plane [ds =(dx +dy )/y l.
'7 is bounded by the circle % of radius —,', centered at
x = —,', and the lines x =0 (to be denoted by 6) and
x=1 (X). Geodesics in this space are given by the
upper half of circles centered on the real axis. Their in-
tersections with the real axis are denoted by g (the
infinite past) and ri (the infinite future) [see Fig. 1(a)].
Let g(0, ri&0. A trajectory enters 7' from the side
x =0, at time t =0, and exits from either the circle % or
the vertical side X. Periodic boundary conditions are
imposed by mapping % onto 6 via z z/(1 —z) and X
onto 6 via z z —1. The dynamical system so defined
will be pictorially called a hyperbolic billiard. The sym-
bolic code of a trajectory of such a billiard is the doubly
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FICJ. l. (a) The hyperbolic triangular billiard 7'. A geo-
desic in the hyperbolic upper half complex plane is shown as a
semicircle orthogonal to the real axis. It originates from the
point ( at time t = —~ and ends at the point g at time
t =+~. At time t =0 the motion leaves the point Pp on the
boundary of V. It hits the boundary again at Pl. sp =r is add-
ed to the symbolic code, and the arc P l-g is mapped to P l-g by
z z/(1 —z). P2 is the next intersection with the boundary
(s~ =r). (b) The hyperbolic quadrilateral billiard 6. Three
diferent trajectories leaving the point Pp are coded by sp =r,
s, l since they hit the sides of 6 respectively on the right,
straight in front, and on the left of Pp.

infinite (past and future) sequence of symbols r, l, which
records the intersections of the geodesic trajectory with
% and L', respectively. It will be indicated with [s;[,
s; =r, l, i = —~,~. The symbolic code is in one-to-one
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relation (modulo sets of zero measure) with a geodesic
trajectory.

With no loss of generality, let g ~ 1, and let us consid-
er only the future part of the code, (so, sl, . . . ), where
now so =r. It depends only upon the infinite future point
tl, in an arithmetical fashion. In fact, let [n~, n2, . . . ] be
the continued-fraction (CF) expansion of ti: @=1/(n~
+ I /(n 2+ I / . The desired relation is that the num-
ber of initial consecutive r s in the symbolic code equals
n], the number of the following consecutive l 's equals n2,
n3 consecutive r's hence follow, and so on. ' A coding
function F can be associated with each trajectory [la-
beled by g, so that F =F(code) =F(tl)] in such a way
that it is possible to uniquely recover the coding sequence
from the value of the function. This is accomplished by
defining e(r) =0, ~(l) =1, and putting

MQ.. [n nip, . . .]—[I,nl —I,n2, . . .],
Ml. [n nl, .2. . ] [ni+ I, n2, . . .],
M2. [n~, nq, . . . ] [l, l, n~

—I,n2, . . .].
(2)

1. 0—

F(ri) =g e(s;)2
i=l

—n, +
An equivalent formula for F in this case is F=2

.nowledge of the
function F(tl) is equivalent to the full information on the
symbolic dynamics of this chaotic system. The mul-

tifractal properties of F (shown in Fig. 2) have been nu-

merically investigated in Ref. 1. We now show that they
follow from a semigroup of exact symmetries which can
be equivalently used to characterize and define this func-
tion.

In fact, it is convenient to study three mappings de-
fined on the CF expansion of any number between 0 and

1,

F(M; (ri)) =P;(F(g)), i =0, 1,2, (4)

which can be proved by direct substitution in Eqs. (1)
and (2). These equations represent mathematically the
scaling properties of the curve F(q). They can be ex-
tended to the full semigroups generated by M; and P;.
We also note that the action of the M s on x=1 gen-
erates the Farey tree. We now show that the smaller
semigroups generated only by M],M2 and P~, P2 are
sufficient to completely define F. In fact, Eqs. (4) are of
the "fractal-generating" form investigated by Dubuc,
and can be cast into the formalism of iterated-function
systems. To do this, let us consider the mappings w;
from the unit square into itself given by w; (x,y )
=(M;(x),P; (y)), for i =1,2. Since these mappings are
contractive (in the Euclidean metric), they possess a
unique invariant set G = U;w;(G). The graph of the
function F, i.e., the sets of points (x,F(x) ), satisfies such
invariance as a result of Eqs. (4), and hence coincides
with G.

We recall that G is also the attractor of the dynamical
system obtained by successive (random) iteration of the
maps w;: Let us take an arbitrary point (xo,yo) in the
unit square [e.g. , (0,0), which we know to belong to G],
and map it via the IFS w;, i =1,2:

(xl,yl) =w (xo,yp) =(M (xp), P (yp)),

(Possible occurrences of nk =0 are obviated by identify-
ing [.. . , &I, —i, 0,nl, +~, . . . ] =[.. . , nq —~+nl, +~, . . .].)
Setting x =I/(n~+ I/(nz+ I/, Eqs. (2) entail three
Mobius mgppings of the unit interval into itself:

Mo(x) =1 —x,
M, (x) =x/(1+x),
M, (x) =1/(2 —x) .

Three linear mappings, Po(y) =1 —y, P~(y) =y/2, and

P2(y) =(y+ I)/2, can be paired with the former trans-
formations in such a way that one obtains the functional
relations
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FIG. 2. Coding function for the motion in the arithmetic tri-
angular billiard V. The reader can verify its similarity proper-
ties: e.g. , mapping g to Ml(g) one obtains over [0, —,

'
I the

graph of F, scaled by a factor of —,
' .

where cr is a random variable which takes the values 1

and 2, with equal probability. Repeating this operation
over and over, (x„,y„) =w (x„-~,y„ 1), we get a set of
points (x„,y„) which lie upon and fill up the set G. This
allows a fast computation of F.

Single trajectories (in particular, periodic trajectories)
can also be easily retrieved once F is known: Let q be
the coding number computed via Eq. (1) from the sym-
bolic definition of a particular trajectory. The value of g
corresponding to such an unknown trajectory is then
easily retrieved via the equation F(q) =q, which can be
solved to arbitrary precision.

The function F(q) is best seen as the distribution
function of measure. A binomial multifractal measure'
can model F; besides this, a new IFS characterization
can be given as follows. In contrast with the previous
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two-dimensional IFS, we introduce a one-dimensional
IFS generated by the maps M;, i =1,2, restricted to the
unit interval. Its balanced measure dp is defined by the
property dp = —,

' [dp(M| ')+dp(M2 ')]. As as result
of Eqs. (4), one identifies dp =dF. As a consequence,
the one-dimensional random process analogous to (5), x~ M (x) (again, a is a random variable taking the
values 1 and 2, with equal probability), has dF as its in-
variant measure. This property can be used to compute
integrals in dF.

Let us now consider the Holder exponent a(rt) of
F(tl): F(rt+h) —F(rt) —h' ", as h ) 0 tends to zero.
Because of Eqs. (4), and the fact that M; are smooth
maps, one finds the crucial relation a(rt) =a(M;(g)):
a(g) is therefore invariant under the semigroup of
Mobius transformations generated by M;, i =0, 1,2. In
particular, whenever a takes a value e, say, at g, then
the same value will be taken at all the forward iterates of
rt, which are usually dense in [0,1]: As a(0) =~, we
have a(rt) =~ at all rational values.

The semigroup relation above can be extended to the
full group (which turns out to be equivalent to the modu-
lar group) for a modular function a, defined on the full
real line, which coincides with a on [0,1]. The interest-
ing multifractal properties found in Ref. 1 appear there-
fore to be of number-theoretical origin.

The formalism introduced here is also suited for more
general cases. Besides the singular triangle Y, we now
consider the billiard identified by a quadrilateral Q (Ref.
1) whose sides are (1) the vertical x = —

1 line, (2) the
semicircle of radius —,

' around x = ——,', (3) the semicir-
cle of radius —, around x = 2, and (4) the vertical x =1
line [see Fig. 1(b)]. Side (1) is identified with (3) via
the transformation A = [8,8;8, (1+8 )/8] (the short no-
tation [a,b;c,d] defines the Mobius map x (ax+b)/
(cx+d) ). Also, sides (4) and (2) are linked by
8=[8,—8'; —6, (1+8 )/8]. Here, 8 is a real parameter.
The coding of the geodesic motion on this torus is ob-
tained by the letters r, s, l, which are assigned at each in-

tersection with the boundary: r indicates that one hits
the side while turning on the right, s means straight, and
l means left. The future part of the coding depends only
upon the infinite future point rl E [0,1].

A generalization of Eq. (1) to a three-letter alphabet,
with e(r) =0, e(s) =1, and e(l) =2, enables us to define
a new function F, uniquely associated with rl and the dy-
namics. As in the previous case, an IFS reconstruction
of this function, and of its invariant measure, is possible
(Fig. 3). The required Mobius transformations are here
in the number of three, M 1

= [—8, 8; —6, (1+8 )/8],
M2 = [8,6;8, (1+6 )/8], and M3 = [1 —28,26; —28,
1+28' ]. They pair with the linear maps Pi(y) =(1
—y)/3, P2(y) =(1+y)/3, and P3(y) =(2+y)/3 to pro-
duce the fundamental invariant relations (4), which now

hold for i =1,2, 3. The IFS properties shown previously
extend immediately to this case, and, more generally, to
¹ ided hyperbolic billiards with corners at infinity,
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FIG. 3. Coding functions for the motion in the hyperbolic
quadrilateral billiard 6, for diff'erent values of 8 (continuous
lines). Diamonds (6=1/J7), squares (6=1), and triangles
(6=J7) are drawn as points on the attractor of the corre-
sponding IFS.

whose coding measures can be rendered exactly by
(N —1)-Mobius-map iterated-function systems.

Let us now turn to another important example, the an-
isotropic Kepler problem, defined by the Hamiltonian

2 2

+ Py

2p 2 v (x 2+y 2) ~/2
(6)

where the effective masses p and v are different. This
system is effectively chaotic when the mass ratio p/v is

sufficiently high (~ 5). A symbolic coding for this sys-
tem has been also proposed by Gutzwiller as follows.
With no loss of generality the value of the constant-
energy surface can be fixed, e.g. , H= ——,'. Let us then

take a set of trajectories starting on the x positive axis,
with zero initial p„momentum. From Eq. (6) one sees
that this specifies a unique trajectory, for any 0 ~ x ~ 2.
Following the time evolution of such trajectories, one
records a bit sequence b~ determining the signs of the fu-
ture intersections of the trajectory with the x axis; b; =0
if the ith intersection occurs for x ~ 0, and b; =1 other-
wise. A coding function F is then defined via F(x)
=gb;2 . As for billiards, this function is nondecreas-

ing, and shows multifractal features. We thereby at-
tempt to approximate it via Mobius-map IFS coding
transformations: Suitable coefficients of new Mobius
maps M; and linear maps P; are found so that Eqs. (4)
(and the associated IFS) define a good approximation of
F.

This approximation can be done, for instance, as fol-
lows. ' One computes directly (from the equations of
motion) a finite (small) number of values of F, F(x„)
=y„. One then requires that the attractor 6 of the IFS
to be determined exactly interpolates the points (x„,y„).
This leads to a set of equations for the coefficients of
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FIG. 4. Exact coding functions for the anisotropic Kepler
problem, for p/v=3 (lowest curve). The approximated curves
obtained by M-map IFS have been shifted in the F direction
for clarity. From top to bottom: M=2 (shift=0. 3), M=4
(shift=0. 2), M =8 (shift=0. 1).

M;, I'; which are readily solved. This is a particular in-
stance of the general problem of approximation of frac-
tal measures discussed in Refs. 11 and 12.

In Fig. 4 we show the coding curve with mass ratio
p/v=3, and a few Mobius-map IFS approximations.
Using more maps steadily increases the quality of the ap-
proximation. No particular characteristics of the aniso-
tropic Kepler motion have been adopted in our recon-
struction, which can be easily shown to converge for any
function F. ' Hence, this method can be successfully ap-
plied to any chaotic system, provided its symbolic dy-
namics is known explicitly.

The multifractal measures studied in this paper are
transformations from the trivia1 coding given by the ini-
tial coordinates to the dynamical coding induced by ap-
propriate partitions of the phase space. They therefore
contain the complete information on the dynamics. The
formalism of IFS applied here to describe these measures
renders explicit their fractal structure, and provides us

with analytically treatable, significant models which ow-

ing to their simplicity can be studied in place of the orig-
inal system. We have shown that this approximation is
exact and quite informative for hyperbolic billiards, and
that it can be adapted arbitrarily well to any chaotic sys-
tern, whose symbolic dynamics is known explicitly. We
are investigating the e%cacy of the same formalism
when exact generating partitions are not explicitly
known.
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