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Determination of the Chemical Potentials of Polymeric Systems from Monte Carlo Simulations
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We propose a new computer-simulation technique, based on the Widom test-particle method, to calcu-
late the chemical potentials of components in a polymeric system. The technique is based on the inser-
tion of test segments onto a polymer and is applicable for any chain length at gas and liquidlike densities.
We perform sample calculations on homopolymers and show that the proposed technique allows for the
enumeration of their thermodynamic behavior in the subcritical and supercritical temperature ranges.
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Exact calculations of the thermodynamic properties of
truly macrornolecular systems, to date, have been mostly
restricted to the determination of the PVT equation of
state for idealized systems where the polymer chains
have been modeled as necklaces of connected hard
spheres. ' Such computations, though useful in delin-
eating the equation of state (and chemical potentials) for
strings of hard spheres, are of limited value in determin-
ing the phase equilibrium behavior for "real" polymers
since they do not incorporate the attractive part of the
potential that characterizes the energetic interactions be-
tween the segments in the chains. Lattice-based calcula-
tions have also been performed using finite-size scaling
or simulations of systems with an interface present.
The direct calculation of chemical potentials in dense,
real chain systems has only been feasible for very short
lengths (i.e., v(5), although a recently proposed tech-
nique by Siepmann ' appears promising in dealing with
chains of longer length. The current understanding of
the phase equilibria of macromolecular systems has thus
largely been obtained through the use of the classic
Flory-Huggins mean-field lattice model (or its improve-

ments), which include one adjustable parameter, g, per
binary pair in the system. This model is not of value in

quantitative predictions of polymer phase equilibrium
since, for example, it has been shown recently through

neutron scattering that the g parameter, which is as-
sumed to be a constant in the original theory, is actually
a complicated function of the chain lengths of the con-
stituent polymers as well as composition. Recent work in
this area has involved the application of integral equa-
tion techniques' on reference interaction-site models to
enumerate the thermodynamic properties of macro-
molecular systems.

In this paper we present a technique to calculate the

where P= I/kttT, ktt is Boltzmann's constant, T is the
temperature, U, is the energy of interaction experienced
by a test particle that is inserted at random into a Auid

containing N particles in the canonical ensemble at equi-
librium, and ( )tv denotes an ensemble average. The
average in Eq. (1) is performed in an ensemble where
the particles in the system are not aA'ected by the test
(ghost) molecule. In a similar fashion, the chemical po-
tential of a molecular system can be obtained through
the inverse Widom equation, '

Pit„=In(exp(PU, ))tv ~1, (2)

where ( . . )tv+ ~
is an average in the canonical ensemble

containing N+ 1 real particles, and U, is the interaction
energy lost by the system if one molecule out of the
N + 1 in the simulated system were to be removed.
Equations (1) and (2) are not very accurate at low tem-
peratures or at high densities since the terms that con-
tribute most to the ensemble averages cannot be sampled
correctly under these conditions. ' ' The difficulties are
especially severe for the inverse Widom equation [Eq.
(2)].' To partially overcome these problems one can
use an alternative expression that relates the distribution

chemical potentials of polymer chains from Monte Carlo
simulations. The proposed technique is based on the Wi-
dom test-particle method which has been utilized suc-
cessfully in the past to calculate the chemical potentials
of small, nearly spherical molecules. '' ' Mathematical-
ly, one obtains an equation for the residual chemical po-
tential (It, =p —It ', where It

' is the chemical potential
of the molecule in the ideal-gas state at the same density
and temperature as the fluid) for a molecule in a fluid
which can be expressed as ' '

—Pp, =ln(exp( —PU, ))tv,
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functions f(U, ) and g(U, ), for the test- and real-particle
energies, respectively, to the residual chemical poten-
tial '

ln [f(U, )/g (U, ) ] = —PU, +Pp„. (3)

Equation (3) can sometimes be applied in the region of
overlap of the two distribution functions to obtain esti-
mates of p, even in ranges of thermodynamic space
where Eqs. (I) and (2) by themselves do not yield reli-
able results.

The extension of this scheme to polymeric systems
would involve the insertion of a test polymer chain at
random into the melt and determining its chemical po-
tential through Eqs. (1)-(3). Although such a technique
has been applied successfully to dense systems comprised
of short lattice chains (v~ 5), ' when one deals with
longer chains the distribution function f(U, ) cannot be
determined accurately over all ranges of U, (especially
negative values), since the insertion of a test chain will

almost always result in the situation where it overlaps
one or more of the chains in the system. Also, there is
expected to be almost no overlap between the two distri-
bution functions, making the use of Eq. (3) also practi-
cally impossible in this context. Obtaining an accurate
value of p, will thus not be possible through the insertion
of a test polymer chain. A promising alternative to test-
particle insertions is provided by the technique recently
introduced by Siepmann for chain molecules on a lat-
tice and its generalization for continuous space. How-
ever, these methods are still of limited use when one
deals with long chains (i.e., for v~ 20) and high densi-
ties (p* ~ 0.6).

To overcome the disadvantages associated with the in-
sertion of one test chain into the system, here we propose
an alternative technique which involves the simulation of
a system comprising N chains of length v, and inserting
one bead on to an end of one of the chains in the system,
and computing the analog of Eqs. (1)-(3) for this situa-

Z(N, v;P, V) =„~ dr] - . dr, ~4V
&& exp[ —PU(r), . . . , r,~)] (5)

is the configurational part of the canonical partition
function for a system of N chains of length v in a volume
V at a temperature P. U(r~, . . . , r„~)is the total in-

teraction energy of the ¹ hain system including bonded
and nonbonded contributions. Now consider a system
comprised of N —

1 chains of length v and 1 chain of
length v+1. We can then write the chemical potential
of the (v+ 1)th chain in a fashion similar to Eq. (4),

—Pp, h.„„(v+I ) =lnZ(N —I, v, I, v+ I;P, V)

—lnZ(N —I, v; P, V) .

By subtracting Eq. (4) from Eq. (6) it follows that the
diA'erence in the residual chemical potentials, p„,is

tion. U&, the interaction energy experienced by the test
particle would then correspond to the bonded and non-
bonded potentials experienced by the new chain end and
the chemical potential of this test bead could then be
computed through Eq. (I). To apply the inverse Widom
equation one removes a bead from the ends of one chain
in the system. The energy loss associated with the re-
.,&oval of this chain end, U„can be calculated and the
appropriate chemical potential computed through the ap-
plication of Eq. (3).

It is important to emphasize that although the pro-
posed scheme deals with the addition (or removal) of end
beads of the chains, the chemical potential computed
through this process corresponds to a thermodynamic
property that is representative of the chains in the sys-
tem. To oAer a mathematical proof of this assertion we
consider chains of length v. The chemical potential of a
single chain, p, h,. ;„,can then be written as

—Pp, h,. ;„(v)=lnZ(N, v;P, V) —lnZ(N —I, v;P, V), (4)

where

—P[p,h,. ;„(v+I ) —p, h.„.„(v)]= —Pp, =InZ(N —I, v, I, v+ I; P, V) —InZ(N, v; P, V) .

(10)

To relate p, to the proposed test-bead insertion procedure one should note that

Z(N —I, v, l, v+ I;P, V) =„„dr~. dr, ~dr, +~exp[ —P[U(r~, . . . , r,~)+U,~~(r, +~)j], (8)

where U, + ~
is the total interaction energy experienced by the (v+1)th bead which is inserted onto an end of one of the

chains in the system. From Eqs. (5)-(8) it follows that

fy . j ydr~ dr, ~exp[ —PU(r~, . . . , r,jv)]ft dr„+~exp[—PU, +~(r,+~)]
Z(N, v;P, V)

Recognizing that exp[ —PU(r~, . . . , r,&)]/Z(N, v;P, V) is the probability of the occurrence of a system of N molecules
of length v in state r] - . . r,z finally yields

—Pp, =In(exp[ PU(r, , +))]), . —
Equation (10) proves that the quantity obtained from the test-bead insertion scheme is formally equal to the incremen-
tal, residual chemical potential between a chain of length v+1 and v at any density. In addition, this proof can be gen-
eralized to calculate the incremental chemical potential for any other desirable environment, e.g. , for polymer molecules
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in a solvent.
The systems simulated in this work corresponded to

the collection of bead-spring chains of desired length v in

a box of size l„xl~, x l, units in the x, y, and z directions,
respectively, and were simulated in the canonical ensem-
ble. Periodic boundary conditions were assumed in all
three directions, and the systems simulated contained
200 to 800 beads depending on the length of the chains
employed. Nonbonded beads were assumed to interact
through the standard Lennard-3ones potential, where e
and o. correspond to the potential and size parameters
associated with the model. ' The potential was truncat-
ed at a distance of 2.5o., and all calculations of thermo-
dynamic quantities were corrected for long-range ef-
fects. ' Bonded beads were assumed to interact through
a spring potential as has been utilized by Gao and
Weiner, '

Ub(r) = —, x'(r —a'), 0.5 & r/a ~ 1.5,

1.5

l.O

0.0

0.0 0.2 0.zI-

p
0.6 O.B

p*/T* =Pp„+(1/v)lnp (12)

while the potential is infinity elsewhere. For these calcu-
lations we have chosen tco /c=400. The initial state of
the system was generated by placing the molecules ran-
domly in the box ensuring that the centers of no two
beads were closer than 0.5'. Subsequently, the chains
were moved through the use of the reptation and crank-
shaft moves as have been described in detail elsewhere, '

with the exception that bond lengths are also allowed to
vary, and the states sampled through the use of Metrop-
olis importance sampling. Equilibrium properties were
then obtained using standard techniques. '

We have conducted simulations for chains of length 20
at reduced temperatures T*(=kcT/c) of 2 and 8, re-
spectively. Pressures were calculated using the virial
equation as has been suggested by Gao and Weiner, '

and it was found that the pressure approached the value
expected of a molecular fluid as the system density ap-
proached zero (i.e., P =p kcT, where p =N/V, N is
the number of chains in the systems, and V is the total
volume). We have calculated chemical potentials follow-
ing Eqs. (1)-(3) and find that p, values determined
from Eq. (3) were always consistent with those calculat-
ed from the test-particle method [Eq. (1)]. Further, the
slope of the line ln[f(U, )/g(U, )] vs PU, was always
found to be equal to —

1 within simulation uncertainty.
The results obtained from the inverse Widom relation-
ship [Eq. (2)], however, were not in agreement with the
reduced chemical potentials calculated according to Eq.
(1), at reduced bead densities (p* =Nv/V) greater than
0.3 at T* =8. This result is not surprising since similar
results have been found for molecular systems under
similar conditions. ' In Fig. 1 we plot the pressure, rep-
resented as P*/T* (=Pa /kcT), as a function of the
density of the fluid, p*, at the two different tempera-
tures. In addition, we plot the chemical potential,

FIG. 1. The reduced chemical potential p*/T* and reduced
pressure &*/&* plotted as a function of reduced density p* at
reduced temperatures of T* =2 (a) and 8 (o), respectively.

The second term in Eq. (12) represents an ideal-gas con-
tribution and has been divided by v since the chemical
potentials utilized in this equation refer to a property re-
lated to a single bead. Assuming that the chemical po-
tential of the full chain can be approximated by the
product of the residual chemical potential per bead times
the chain length v (an assumption whose validity is dis-
cussed in the next paragraph), and utilizing the phase
equilibrium conditions of equality of pressure and chemi-
cal potential, we found the existence of a liquid phase of
p =0.68, in equilibrium with an ideal gas at a pressure
P* = 1.0x 10, at a temperature T* =2. No such
equilibrium was found for T* =8, indicating that it is a
supercritical isotherm.

We have proven earlier that the chemical potentials
calculated by the particle insertion-removal scheme cor-
respond to an incremental Helmholtz energy between a
chain of length v+1 and one of length v at all densities
[Eq. (10)]. To examine the dependence of the incremen-
tal chemical potential on chain length in the zero-density
limit we have calculated this quantity for a single chain
of v connected beads (1 & v & 10) using a "primitive
Monte Carlo" method. The technique involves the ran-
dom generation of an ensemble of chain conformations
to delineate all the thermodynamic properties at any
temperature. It was found that this technique produced
overlap-free conformations with reasonable e%ciency for
short chains but became ine%cient as one proceeded to
longer chains. Up to 5X10 configurations were gen-
erated for the longer chains. The incremental Helmholtz
energy as a function of the chain length of the polymers
was then calculated from Eq. (7). The results of these
calculations along with computations from the Widom
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FIG. 2. Zero-density reduced residual chemical potential
p,*IT* as a function of chain length v at T* =2 and 8, respec-
tively: &,O, Widom test-bead insertion; a, 0, primitive Monte
Carlo.

test-particle scheme are shown in Fig. 2 where p,*/T*
( =Pp, ) is plotted against v. It is clear that there is good
agreement between the two techniques, within simulation
uncertainty, although the Widom method is more efti-
cient at longer chain lengths. This calculation thus
verifies that we can perform efficient sampling of the in-
cremental chemical potential based on Eq. (10). The re-
sidual chemical potentials assume nonzero values at zero
density due to the contributions of intrachain interac-
tions alone. We further note that the incremental
Helmholtz energy becomes independent of chain length
if one considers chains of length larger than ca. 5-10 re-
peat units at these temperatures. We can thus estimate
the chemical potential of a chain of arbitrary length by
multiplying the incremental chemical potential by the
number of beads in the chain, and adding corrections
from simulations of short chains for which the incremen-
tal chemical potential is a function of chain length.
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