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We study both classical and quantum vortex creep in disordered thin-film superconductors in an ap-
plied magnetic field. Quantum tunneling of vortices leads to a variable-range-hopping resistivity with a

1

non-Arrhenius temperature dependence at low 7. Mott’s 7 law is modified by long-range vortex in-
teractions, and a numerical analysis enables us to estimate a temperature exponent between roughly
and §. At higher 7, a classical hopping regime is expected with a current-density scale for nonlineari-

ties varying (roughly) as T°.

PACS numbers: 74.40.+k, 74.60.Ge

Since the discovery of the high-temperature oxide su-
perconductors, there has been a resurgence of interest in
vortex creep.' ™3 A question of interest in bulk materials
has been the possible existence of a truly superconduct-
ing vortex-glass phase at low temperatures, in the pres-
ence of a penetrating magnetic field.*® In very thin su-
perconducting films, where the vortices become pointlike,
long-range vortex-glass order is expected only at zero
temperature® and this will be confirmed by our numerics
below. Nevertheless, at low temperatures transport is
greatly modified by the growth of vortex-glass correla-
tions, as recently emphasized.® Moreover, at sufficiently
low temperatures, quantum tunneling of vortices should
dominate the transport.7 In this Letter, we study a sim-
ple model for the low-temperature properties of disor-
dered superconducting films in a field and explore its
consequences for both classical and quantum vortex
creep. Our main prediction is the existence of a novel
quantum regime, where vortices undergo variable-range
hopping (VRH), in direct analogy to variable-range hop-
ping in dirty electron insulators.® Taking explicitly into
account multivortex-hopping processes leads to a nonac-
tivated form for the resistivity, with a temperature ex-
ponent which depends upon a critical exponent of the
T =0 vortex-glass fixed point. Combining our numerical
estimate for the exponent with a physical argument
about tunneling rates enables us to estimate a tempera-
ture exponent roughly in the range % to +, in contrast
to Mott’s + law. At higher temperatures we obtain a
classical VRH regime with a current-density scale for
nonlinearities varying roughly as T3, in contrast to the
Anderson-Kim theory which predicts the first power of
T.

Consider then a thin disordered superconducting film
in an applied magnetic field. The long-range crystalline
correlations in the Abrikosov vortex lattice will be des-
troyed by disorder.® For simplicity, we assume through-
out “strong disorder,” so that the lattice translational
correlation length is not significantly greater than the in-
tervortex spacing. At nonzero temperatures the vortices
will be mobile, leading to a vortex-creep resistance and a

loss of superconductivity. As 7— 0 the motion of vor-
tices will cease, and the film should freeze into a super-
conducting vortex-glass phase—a phase which lacks
conventional off-diagonal long-range order, but has
Edwards-Anderson spin-glass-like order.®

A crucial dimensional parameter characterizing the
2D vortex-glass phase at 7 =0 is the ratio of the vortex
localization length,10 denoted a., and the distance be-
tween vortices, | =(¢o/B)'?, with ¢o="h/2e and B the
applied magnetic field. As argued below, the classical
regime is when a,</, but near the superconductor-
insulator transition'® for larger B, where a. diverges,
vortex quantum effects will dominate. The most impor-
tant energy scale is set by the vortex core energy, K
=h2p,/m, where p; is the areal superfluid number den-
sity and m the Cooper-pair mass. Both the characteristic
pinning energy (per vortex) and the vortex interaction
strength [~ K In(r)] will be set by K.

At finite temperatures vortex motion destroys the
2D vortex-glass order. For low T one expects® that
the vortex-glass correlation length &7, which sets the
scale for exponential decay of the correlation function
[[<y* (r)yw(0))]%].,, where v is the Cooper-pair field and
the square brackets denote an ensemble average, will
diverge as a power law in 7, with exponent vy. For tem-
peratures comparable to K, vortices should be completely
depinned and mobile, and &7 will be given roughly by the
vortex separation /. Thus we expect (kp=1)

Er=I1(K/T)'". (1)

Since the vortices are localized by disorder in the 2D
vortex-glass phase, many properties can be deduced by
ignoring quantum fluctuations and treating the vortices
(and the phase of the pair field) classically. This is
directly analogous to the classical treatment of electrons
in the Coulomb-glass models of localized insulators by
Shklovskii and Efros.® The simplest model imaginable,
in terms of the phase ¢ of the pair field, y =|y|e®, is the
so-called gauge glass, '’

H=—KX cos(g, =, 45— A%, . (2)
r,é
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where r denotes sites of a square lattice, §=2x,p are
near-neighbor vectors, and 4/ is a random quenched
gauge field taken as uniformly distributed on the interval
[0,27]. If the potential exp[BK cos(¢)] is replaced by a
Villain potential,

explBVk (9)1=X expl— K (9 —27n) /271,

in the partition function for H in (2), standard duality
transformations'? can be used to expose the vortex de-
grees of freedom, with a dual Hamiltonian:

fo="3 3 QaNe=B)GR~R)QaNe—=By), (3)
where Ng, an integer, is the number of vortices on sites
of the dual lattice (plaquettes of the original lattice), Bg
is the magnetic field penetrating each plaquette obtained
from a directed sum of 47 around the plaquette, and
G(R) is the 2D lattice Green’s function (inverse lattice
Laplacian) which varies as In(R) for large R. There is
also a “neutrality” constraint on (3) that Xx(2zNg
—Br)=0. Since the model (2) is invariant under Bg
— Bgr+2nng, for integers ng, all the B’s entering (3)
can be shifted into the interval [0,2x] and act as a com-
pensating “‘negative charge background” for the vortices.
With this shift, on average, half of the (dual) sites will
be occupied by positive (N =++1) vortices and half of
the sites will be empty (/N =0). Because of this, the typ-
ical distance between vortices, /, can be equated with the
lattice spacing in (2) or (3).

In order to characterize the 7 =0 vortex-glass phase
described by (2), it is useful to take a square L by L lat-
tice (in units of lattice spacing /) with periodic boundary
conditions, and consider the magnitude of the typical
(e.g., rms) change in ground-state energy U; upon
changing the boundary conditions in one direction to an-
tiperiodic, which is equivalent to the replacement A
— A¥+r/L. This energy is expected to vary as a power
law in L:

U, ~KL?, (C))
where 6 is the renormalization-group eigenvalue of tem-
perature.'? Since 6 is negative (see below), there are ex-
citations of arbitrarily low energy at long length scales,
which can be thermally excited and should destroy the
glass order at any finite temperature. More specifically,
at temperature T excitations on scale L will be active
provided K/L 1l < 7. The smallest such excitations, of
size 1(K/T) /!¢l , will set the range of correlations, that is,
Erin (1). Thus we can identify vr=1/|6|.

The above twist in boundary conditions can be ab-
sorbed either by a smooth spin-wave variation or by
moving a single vortex a distance L/2 (or moving many
vortices, see below). This expectation can be quantified
by redoing the duality transformation for model (2) on a
finite lattice with periodic boundary conditions. Besides
changing G(R) in (3) to be an inverse Laplacian period-
ic in L, an additional term in the Hamiltonian is generat-
ed due to the nontrivial topology of a torus. The dual
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vortex Hamiltonian takes the form I?=I-Io+1-11, with
Hy given in (3) and

H\=Vk [§ (EYy=1 — A% y= )]
+ Vi [}; (Ei=1, ——A§=,,y)] , (5)

where Eg is an “electric field”” which lives on the links of
the dual lattice and satisfies V-Eg =27Nr —Br and
VXE=0. The values of the Villain functions in (5) do
not depend on the choice y =1 in the first term (or x =1
in the second) since shifting y changes the argument by
27 times an integer.

At T =0 the 2n-periodic Villain functions reduce to
Vk(¢) =+ K¢? in the interval [—z,7z]. H, thus accounts
for the spin-wave energy, since upon changing the
boundary conditions by n via A4f— 47+ /L, without
rearranging vortices, the only change in the energy is due
to the first term in H,, whose argument changes by =.
This gives an energy change of order K, independent of
L. Alternatively, if a single vortex is moved a distance
L/2 in the y direction, or a number of vortices are moved
with an equivalent cumulative change, then the changes
due to the new electric field cancel exactly the changes
from the boundary conditions, so H, is unchanged. Hy,
on the other hand, changes because the values of the Vg
have been altered. Below, we find that 8 in (4) is clearly
negative, so that for large L, moving vortices is energeti-
cally the most favorable.

Moving a single vortex a distance L without any relax-
ation of other vortices costs a typical energy of In(L).
Since the minimal-energy vortex excitations discussed
above cost substantially less energy (~L ~1°), they must
involve rearrangements of many vortices. We argue
below that such multivortex hops will dominate over sin-
gle hops in the quantum VRH regime.

It is useful to generalize the notion of such minimal-
energy (multi)vortex excitations to an infinite film.
Specifically, an excitation on scale L is defined as the
minimal-energy vortex rearrangement in a given L by L
region, which has a net (center-of-mass) displacement
equivalent to moving one vortex a distance L/2. We ex-
pect their typical (e.g., rms) energy on scale L to vary
with the same exponent 0 as the excitations in an L by L
system with periodic boundary conditions.

Creation of such optimal vortex excitations will typi-
cally involve surmounting barriers V; with energies
much higher than U, itself, due to intermediate nonop-
timal vortex configurations. The usual assumption'? is
that these barriers vary as V; ~KLY, with y= 6. One
also expects y= 0, since each of the intermediate moves
(i.e., a vortex moving one lattice spacing) will cost an en-
ergy of order K. In Ref. 6 it was suggested that y might
in fact be zero.

Consider now the effects of vortex creep on the I-V
curves, ignoring initially quantum tunneling. At temper-
ature 7, motion of vortices will proceed by activation
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over barriers ¥, into locally optimal vortex excitations
(defined above) with energies of order kgT. Creation of
such excitations involve moving vortices on the scale of
the coherence length &7, so that the relevant barrier is
Vi=¢,. Since &7 varies with temperature, this is a classi-
cal variable-range-hopping picture. This process leads to
a linear resistance, R, ~exp(— V¢, /T) or

R, ~expl—(x/T)'T"'7], (6)

which is the simple Arrhenius form if® y=0. In the
presence of an areal current density J, the Magnus force
contributes an energy ¢oJEr in creating these vortex ex-
citations. At a current density J,=T/¢oé7 this energy
becomes comparable to the intrinsic thermal energy scale
and should result in nonlinearities in the 7-¥ curve.'*
Because of the temperature dependence of &7, J, van-
ishes at T'+|'/9|, faster than the linear 7 dependence
predicted in the Anderson-Kim theory. Below, we show
that 8= —0.5, and so we predict (roughly) a 73 depen-
dence.

Equation (6) is modified by quantum tunneling of vor-
tices. As in Mott variable-range-hopping theory,® there
will be a competition between finding states of energy
within kg T of the ground state and states which are close
enough to tunnel into. In generalizing Mott’s theory to
charged systems with a 1/r? interaction between parti-
cles, Shklovskii and Efros® argue that hopping of a single
particle (vortex) a distance r, without additional relaxa-
tion, will cost a typical energy ~1/r°. Multiplying by
the rate of tunneling, exp(—r/a,), and optimizing with
respect to r yields a linear resistance due to vortex tun-
neling of the form

Ry ~expl—(To/T)*1, )

with p=(+0¢) ! and To=K(l/a,)°. Logarithmically
interacting particles (vortices) might then be expected to
correspond to the o =0 limit of this formula, i.e., an Ar-
rhenius form.

Note, however, that a logarithmic interaction differs
qualitatively from an inverse power law, since it grows
without bound with particle separation. This fact re-
quires modifying the Shklovskii-Efros argument® since
single-particle “ionization” energies can no longer be
defined. In this case the typical minimal energy to move
a single particle a distance r will grow with increasing r
[as In(r)] due to direct attraction to the ‘“hole” left by
the particle, rather than decreasing (as 1/r°). This im-
plies a nonlinear current-voltage characteristic (i.e., a su-
perconductor), as in a 2D superconductor in zero field.
Our results yield an energy scale for vortex motion which
decreases with distance (1/7!!), so that multivortex hop-
ping dominates the above single-particle effects. As we
argue below, quantum tunneling for such multivortex
hops then produces a linear resistivity which dominates
the classical expression [Eq. (6)] at low enough tempera-
tures.

Consider then the minimal-energy vortex excitations

introduced after Eq. (5), which involve many vortices
hopping and cost an energy U, ~r ~16l on scale r. These
multivortex hops, although energetically more accessible,
will be harder to tunnel into than the single hops con-
sidered in Ref. 8. A lower bound for this multihop tun-
neling rate can be estimated as follows: In the worst-
case scenario, creation of an excitation on scale r will in-
volve tunneling of all of the (r/I)? vortices in the r by r
region a distance comparable to the intervortex spacing
1. The rate for this should be proportional to the single-
vortex rate, exp(—//a.), raised to the power of the num-
ber of vortices: expl—(r/1)2(//a.)]. A natural ansatz
for the actual tunneling rate would be to replace the
power of 2 in this expression by an exponent yp, with
1 < yp =< 2. Multiplying this rate by exp(—U,/T) and
optimizing with respect to r gives a resistance with pre-
cisely the same form as in (7) but with p=(1+/6|/
o) ™' and To=K(//a,)'"*2, rather than the o— 0
limit of the Shklovskii-Efros results after Eq. (7). With
6 near —+ and 1< vo = 2, the hopping exponent p
falls (roughly) in the range % to %+. We note that such
multiparticle-hopping processes as considered above
might dominate over the single-particle-hopping process-
es considered by Shklovskii and Efros even for an inverse
power-law interaction (¢ > 0).

Upon cooling, the classical Arrhenius form in (6) for
the resistivity should cross over into the quantum VRH
form in (7), at some temperature 7*, which can be de-
duced by equating the arguments of the two exponen-
tials. For simplicity, assuming w =0 in (6), this gives

T*=(a,/1K . ®)

There are several possible regimes. For vortices local-
ized on scales short compared to their separation, a. </,
T* is much smaller than K and the classical Arrhenius
form in (6) will hold down to inaccessibly low tempera-
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FIG. 1. Ensemble-averaged modulus of the defect energy,

U, in (4), vs system size for the gauge-glass model (2) on
square L by L lattices, using the spin-quench method (see
text). Error bars represent 2 standard deviations, and the
straight line is a fit to the data, excluding the point for L =2.
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FIG. 2. Scaling plot of the ratio of moments g [Eq. (9)]
computed with Monte Carlo for the same model as in Fig. 1.

tures. This regime will occur for small applied magnetic
fields. However, a, increases'® with increasing field, and
for a. >/, quantum VRH dominates the resistivity and a
nonactivated form as in (7) with multivortex-hopping ex-
ponents is expected. Upon approaching the field-tuned
superconductor-insulator transition'® at some critical
field B., a, diverges, Ty in (7) vanishes, and the form of
the resistivity becomes dominated by quantum critical
fluctuations.'® Thus the nonactivated form in (7) should
be most accessible at intermediate fields, say, B~ B./2.
The above discussion involves a critical exponent 6
describing the 7 =0 vortex-glass phase. We now de-
scribe three different calculations of 6 for the gauge-
glass model of Eq. (3), which all give a value of 8 close
to — +. The most direct method involves searching for
the ground state of H (or H), with both periodic and an-
tiperiodic boundary conditions and ensemble averaging
the modulus of the difference to get U;. For very small
system sizes (L by L with L =2,3,4), we computed U,
for the Villain model in the vortex representation, (3)
and (5), by exhaustive searches for the ground state, al-
lowing each site to either be vacant or have one vortex.
Slightly larger sizes were possible using a spin-quench
method, '®> which can also be applied to the cosine model,
Eq. (2). In this approach, a random initial configuration
of the {¢,} is relaxed to a stationary (possibly metasta-
ble) state, which is then repeated for a large number of
initial configurations (typically 200 to 1000) until fur-
ther attempts cease to find states of lower energy.
Where they overlapped, the two methods agreed within
the statistical uncertainties. Spin-quench results for the
cosine model are shown in Fig. 1, for systems up to
L =7, on a double-logarithmic plot. The error bars rep-
resent 2 standard deviations and are limited by the num-
ber of samples in the ensemble average. Ignoring possi-
ble systematic errors due to small system sizes, the slope
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gives an estimate of |8] =0.43 +0.03. The value of 8 for
the Villain model was consistent with this.

An estimate for 8 was also obtained from Monte Carlo
simulations on the cosine model. Both the spin-glass sus-
ceptibility, ys¢ =NI[(|g|*].,, and a ratio of moments,

g=2—[lg|"]./Klq|»13, C)

were calculated.'®'”  Here g=N"'X,expli(p "
—¢,(2))] is the overlap between the configurations of
two identical independent copies of the system. The
quantity g is expected to have the finite-size scaling form
g=2(L"""T) from which the estimate 1/v; =|6| =0.47
is found, as shown in Fig. 2. It is gratifying that quite
different calculations give consistent results, namely,
0= —0.5. It would be very interesting to do experiments
on thin superconducting films to test this prediction.
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