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Measuring T, of the Quark-Gluon Plasma with e +e Pairs
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The e e spectrum resulting from ultrarelativistic heavy-ion collisions is shown to have a sharp reso-
nance at an invariant mass M =0.2T, ( = 40 MeV for typical T, =200 MeV). Observation of this reso-
nance would signal the existence of the quark-gluon plasma, confirm the first-order nature of the transi-
tion, and determine the value of T,.

PACS numbers: 25.70.Np, 12.38.Mh

Modern cosmology rests on the expectation that when
the Universe was very hot, quarks and gluons were not
confined inside nuclei. Lattice studies of quantum chro-
modynamics predict a first-order phase transition' at a
critical temperature T, —175-275 MeV. To recreate
the high-temperature phase, accelerators will collide
heavy ions at energies of 200 GeV per nucleon. '

The production of lepton pairs (e+e or p+p ) will

be an important signal because they escape the collision
region without reinteracting and therefore can convey in-

formation about the hot interior. High-energy lepton
pairs are produced by a virtual y, whose energy q and
momentum q are the observed total energy and momen-
tum of the lepton pair. Their invariant mass if M
=(q ) —

q . For M large (500 MeV-5 GeV) the mul-

tiplicity of dileptons per unit space-time volume is

dÃ
d xd q

a
12m M

where I „" is the polarization-averaged "rate" for produc-
ing a virtual y. I „" can be computed by squaring the am-
plitude for each contributing process (e.g. , QQ ~ y,
tr+tr y) and integrating over the thermal phase
space of all the particles except the y. The strong in-

teractions produce resonances in 1 „" at each of the vector
mesons (p, pro, J/ i).ttSince each point in the plasma
may have four-velocity u„, the Bose-Einstein and Fermi-
Dirac factors in the thermal phase space are functions of
p. u for a particle of momentum p. This is the starting
point for most dilepton calculations. ' One can also
relate I „" to the photon proper self-energy at finite T,

1 „"= —Imfi„"/(epq'" —1))0.
Consequently (1) can be calculated from the photon
self-energy. '

The formula (1) is not completely general, for it as-
sumes that the probability amplitude for the virtual y to
propagate through the plasma is the free photon propa-
gator, 1/M . In ordinary plasmas (or even in dielectrics)
the propagation of electromagnetic waves is strongly
dependent on frequency. For a particular wave vector
there is usually one frequency that enjoys resonance
propagation and most other frequencies are so severely

damped that they are neglected. When the effect of
propagation is included, the multiplicity of lepton pairs
per space-time volume becomes '

dW e 2'Jt T+z
d xd q 12m e~ "—

1
(3a)

—M ImH~
9t~ = , &0,(M' —Refi, ) '+ (1m', ) ' (3b)

where j =T or L. HT and Hz are the transverse and lon-
gitudinal self-energy functions of the y. If the plasma
has four-velocity u", the two functions depend on tem-
perature, M, and the energy q u. The real functions %T
and Sz represent the probability that the virtual y will

propagate through the plasma. If one ignores the
denominators in (3) then the result agrees with (1) since
Ii„"=2IIT+IIL. The validity of (3) depends on the
wavelength being much smaller than the system size.
The mean free path can be much larger than the system
size. The larger the mean free path (=k/~lmII~) be-
comes, the more nearly % approaches 8(M —ReII).
This is the case in geometrical optics, where q = ~q~/n is
the only frequency that can propagate in a media with
index of refraction n.

The hadrons p, co, ),J/y still occur as strong-inter-
action resonances in the numerator of (3b). The new
feature is the possibility of a plasma resonance when the
denominator of (3b) is a minimum: i.e., at M =ReII.
Since the one-quark-loop contribution to the self-energy
is ReH=e T, for reasonable T a resonance would
occur at M less than 100 MeV. This can only appear in
the e +e channel, since p

+
p production requires

M & 210 MeV. It will not be possible to detect an e+e
resonance if the energy q. u is small because the back-
grounds will dominate. However, at larger values of q u

the backgrounds fall rapidly. We are thus led to consid-
er the kinematic region

q. u» T»M.
In this region the longitudinal contribution Sz is negligi-
ble because M =ReHz is satisfied very near the light
cone' and the factor M =0 in the numerator of (3b)
will suppress 9tL In the sam. e region (4) the transverse
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self-energy is '

Re?IT =
3 e T /6,

where the factor —,'results from the squared charges of
the light quarks, u and d, summed over color. This gives
a resonance at M =ReHT, or M =0.16T. There will be
QCD corrections to (5) of order e g T which can raise
this value. So the resonance is expected at M =0.2T.

The width of the resonance is determined by the imag-
inary part of H. The one-loop contribution resulting
from QQ annihilating into a virtual y is ~lmII~ —aM
provided the virtual photon mass is above threshold:
M) 2m@. For large M the denominators in (3) are ir-
relevant. ' Then 5 =

~
ImIIT ~/M —a is small.

Near the resonance at M =0.2T the threshold condi-
tion for QQ annihilation probably cannot be satisfied for
several reasons: (a) The confinement transition is close
to, but not identical with, the chiral-symmetry-breaking
transition. Consequently, the residual quark masses may
be large enough that M&2m'. (b) Even if chiral sym-
metry is exact, the quarks acquire effective thermal
masses' mg =gT/J6 that would be too heavy to annihi-
late into one photon of mass M.

Moreover, the QCD corrections to ImII are larger
than the one-loop result because of phase space. The
phase space for QQ annihilation is —M, which is small
near resonance. The phase space for scattering contribu-
tions (ab cy) to ImII is —T, which is much larger.
There are three QCD processes: gluon emission (QQ~ G+ y), Compton scattering from a quark (QG

Q+ y), and Compton scattering from an antiquark
(QG Q+ y). All are two-loop contributions to ImiI.
These are free of infrared and mass singularities. "'
Braaten, Pisarski, and Yuan' have calculated the value
of ImH when M & T, but for a y that is not moving with
respect to the plasma (i.e., q u =M). In the kinematic
region (4) the y has a large momentum with respect to
the plasma and a new calculation is necessary. By
squaring each amplitude and integrating over the three
unobserved particles, the calculation can be reduced to a
four-dimensional numerical integration. In the kinemat-
ic region (4) the result is

where a is determined numerically. Each of the three
processes contributes about equally. When the quarks
are massive, a =25. Consequently, ~lmiIT~ =e g T /
56. For typical g = 1.2 (Ref. 1) and T—200-400 MeV
the width is 1-2 MeV. The corresponding lifetime of
100-200 fm/c is intermediate between those of the co (24
fm/c) and p (45 fm/c) and that of the J/ y (2940 fm/c).
All of these are longer than the expected lifetime of the
fireball, which is why they are able to convey informa-
tion about the hot interior. (By contrast the p lifetime is
so short, 1.3 fm/c, that it can only convey information

dN «w
z dzf(z)9tKO(M ~/T),dq 6z

(8)

where 9t =29tT+%q and Eo is the modified Bessel func-
tion.

The essential parameters in the thermal history are the
initial time zo of thermalization and three temperatures:
the initial temperature To, the critical temperature T„
and the final temperature Tf. The values used here are
zo=1.0 fm/c, TO=400 MeV, T, =200 MeV, Tf =100
MeV. The ratio of color degrees of freedom (two light
quarks plus gluons) to pion degrees of freedom is r = —", .

There are three stages in the cooling process: (i) For
zo & z& z~ the system is in a pure quark-gluon phase
(f=1) with T, & T & T,. Proper time and temperature
are related by z=zo(To/T) and this determines the
transition time z~. (ii) For z~ ( z& z2=rz~ the system is
in a mixed phase undergoing a first-order phase transi-
tion at fixed temperature T,. The quark-gluon fraction
of the system is f=(z2/z —1)/(r 1), which decre—ases
from 1 to 0 during the mixed phase. (iii) For z2 ( z & zf
the system is in the hadron phase (f=0), i.e. , a pion
plasma, with Tf & T & T, . Proper time and temperature
are related by z=zz(T, /T) and this determines the
final time zf at which the decoupling temperature Tf is
reached.

(I) Plasma resonance When the inte.g—ration in (8)
is performed over the pure quark-gluon phase (zo & z( z~), the resonance at M =0.2T will produce a broad

about the surface of the fireball. )
The experimentally observable multiplicity dN/d q is

obtained by integrating (3) over the space-time volume
of the plasma in the standard manner. The
colliding-beam axis is z and the collision occurs at t =0.
Because the initial energy density is so high, quark and
gluon interactions will rapidly lead to thermalization in
the central region. ' Perfect fluid hydrodynamics shows
that if the expansion is only along the z axis, then the
thermodynamic functions only depend on the proper
time z = (t —z ) 't . An element of the plasma at
(t,x,y, z) expands along the beam axis z with velocity
v =zz/t. Its four-velocity is u" =(cosh@,O, O, sinhq),
where g is the coordinate-space rapidity. The integra-
tion element is d x =d x& zdzdg, but because the ex-
pansion is one dimensional, fd x~ =tzR~, with R~ = 8
fm for uranium. The rate to be integrated (3) depends
on the proper time z through the temperature and de-
pends on the rapidity g through q. u. The four com-
ponents of the dilepton momentum in the laboratory
frame are conventionally chosen as

q" =(M~ coshy, q», q~~, M~ sinhy),

where M&=(M +q&)' . Because q. u=M&cosh(q—y), the kinematic region (4) is guaranteed by choosing
q&»T. The integral over g can be performed analyti-
cally (whenever 9t is independent of tl) and gives
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aR~
(r —1)z, % K (M /T, ).

d4q 6z' (9)

The peak in %T at M =0.2T, is a direct signal of the
first-order phase transition. The results are shown in

Fig. 1 for two choices of q&. The backgrounds to this
signal will be considered next.

(2) Pion bremsstrahlung Fr.—om the mixed phase and
the hadronic phase the major background is pion brems-
strahlung (snab zzxe+e ). There is no resonance effect
and so % =~imII„"~/M in (8). To estimate this one can
use a quartic interaction Xl =A, (x ~) /4, with X= 1.4
from xz scattering lengths. ' Because the pions can

(a) q-per p=500 I1eV

10'-

10'-

10

shoulder for 0.2T, &M &0.2Tp. However, during the
phase transition, the temperature remains fixed at T,
and the resonance in %T is not smeared at all. Integrat-
ing (8) over zl & z & z2 gives

have various charges, altogether there are twenty Feyn-
man diagrams. A crude bound on the overall rate is

(10)

When the bremsstrahlung bound is substituted into (8),
the contribution from the pure hadron phase predom-
inates (by a factor of 2 or 3) over that of the mixed
phase. Their sum is plotted in Fig. 1.

(3) x ye+e .—The major background is the Dal-
itz three-body decay of the z . The lifetime of the z is
so long that very few will decay during the mixed or ha-
dronic phases. Eventually the reaction rates become so
infrequent that the pions decouple. Integrating the
Bose-Einstein function for massive pions at Tf =100
MeV gives dN, /dy =4400-. After decoupling, the pions
cease interacting and their momenta remains constant.
The free-streaming x 's decay in Bight and produce the
e+e background. From PCAC (partial conservation
of axial-vector current), the differential branching ratio
for x ye+e with a dilepton momentum q" is

4tt (m.' —M')'
6'(m +M —2p q). (11)

dq x Mm

Integrating this over all q (with 2m, & M & m ) gives
the known branching ratio 1.2%. At the decoupling time
zf all the pions on the hypersurface da„=d x8(x. u
—zf)u„have a momentum distribution characterized by
temperature Tf. The number of dilepton pairs they
eventually produce is

10
100 200

d'q " "& (2~)' exp(p u/Tf) —1 d'q

For one-dimensional expansion, do„=xR~ zff dri u„. At
large q& this gives

10

(b) q-per'p=1000 NeV dN azfRwTf (m, —M )
4 4 4 Kp m Tf

d q z M m
(13)

10'-

100-

10

10
100 200

with m ~=(m +q&)' . Figure 1 shows that at q&
=500 MeV the transverse plasmon resonance is about 7
times the Dalitz background; at q& =1000 MeV it is 70
times the background. This should be a spectacular sig-
nal.

It is perhaps useful to display the dependence of the
results on the four parameters rp, Tp, T, and Tf. The
ratio of the resonance peak (9) to the Dalitz background
(13) can be approximated for q& » m »M as

i 3/2

0.17
zpTp Tf exp(q ~/Tf )

14
T,2 T, exp(q &/T, )

FIG. 1. The multiplicity dN/d q of e+e pairs in GeV
as a function of the invariant mass M. (a) For q& =500 MeV
the plasmon resonance at M =0.2T, =40 MeV is slightly
above the Dalitz (gc ye +e ) and bremsstrahlung (en'

ate +e ) backgrounds. (b) For q & = 1000 Me V the
plasmon resonance is 70 times the background.

For example, if T, is reduced to 150 MeV with the other
parameters fixed, the resonance is still 37 times larger
than the Dalitz background for q& =1000 MeV. Gen-
erally, no matter what the values of rp, Tp, T„and Tf,
one can always choose a q& large enough that the reso-
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nance stands out above the Dalitz background.
The most important eAect that has not been included

here is the transverse expansion of the plasma, perpen-
dicular to the beam axis. ' Because there is little trans-
verse motion before T„ the resonance will not be
affected much. In the hadron phase, the velocity u„will
develop transverse components whose value depends on r
and z. This will increase the backgrounds but will be
partially compensated by a much smaller decoupling
time zf.
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