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Generalized Coulomb Pairing in the Condensed State
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Starting with a view of condensed matter as a neutral assembly of electrons and nuclei, with mutual
Coulomb interactions, a coherent-state functional-integral approach gives a first-principles theory of
pairing phases that requires no adiabatic separation of time scales. For electrons and protons, both fer-
mions, we show that an interdependent pairing of electrons and of protons can arise at low temperature
with effective pairing interactions. A critical point for this system is identified, which is discussed in the
light of recent experiments on dense hydrogen.

PACS numbers: 71.10.+x, 05.30.—d, 67.80.—s, 74.65.+n

A powerful method for dealing with collective quan-
tum states is the functional-integral approach' in which
the partition function Z for the many-body system ap-
pears as a coherent-state functional integral. In a sin-

gle-component fermion system with an assumed static
pairing interaction v, the partition function then takes
the form

Z = D[+*(xz)]D[@(xz)]
4 ~(x,Ph) = —e(x,0)

x exp( —S[e*,@]/ft ),
where {@*,e] are Grassmann variables, and for chemi-
cal potential p the action S is given by

r Ph aS = dz' dx +*(xz) 6 —p +(xz)40 4 az

is the Hamiltonian and fdx —=g, fd r. At this point the
standard procedure is to perform an appropriate Hub-
bard-Stratonovich (HS) transformation" giving

Z [%'*,W;A*, A] =const x D [W*]D [W]D [6*]D [5]

x exp [S[p*,e;a*,a]/l't],

(4)

thereby introducing new collective fields [A*,hJ and a
new action '

1SN'*, +;&*,5] =„d1 d2 —4*(1).[—A (12)].4(2)

+—A*(12) d, (12) ~,
2 v(1 —2)

+H[e*(xz),e(xz)] '. (2) (5)

Here

H 8 *,+] = dx +*(xz)e( i h V) +(xz—)

+„dxdy —,
' e*(xz)e*(yz)

&& v(x y)e(yz)+(x—z)

which is written here in matrix form (analogous to Nam-
bu's description ) in order to facilitate comparison with
the more general case below. In Eq. (5), 1—:srz, the
transpose of % is

(3)
e'(I) —= (~(I) ~*(I)),

and

a(12)
6(1 —2) [6 a/az e( l AV)+ p]

6(1 —2) [l1 a/a. + e( t eV) lt—]-
A(12) —=

~*(12) (7)

Equation (5) makes clear the fact that the transformed
action is quadratic in the + s. Accordingly a Gaussian field equations that the new field d must satisfy. Thus
integration can be carried out leading to from the vanishing of BS/6A we obtain

with

Z =const x „Dlh*]D [A] exp(S lA*, 4]/6 ), 0 0
h(12) = —v(12) tr A '(12). (IO)

S[6*,4] =tr ln —+ — d 1 d 2
2 2" v (1 —2)

(9)

Up to this point the procedure is exact. To proceed
further requires approximation and it is customary to in-
voke a stationary phase approximation, an extremization
of S with respect to the h, 's, which leads to the mean-

where

E(k) = [[&(k) —&]'+ ~~(k) ~'t '": (12)

which, after Fourier transformation, and introduction of
and summation over Matsubara frequencies, leads to

(k) = —g v (k —k') h(k')
tanh PE (k')

2E(k') 2
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Equations (11) and (12) are recognized as the famil-
iar BCS equations for the gap parameter h. and quasi-
particle spectrum, respectively. Thus the method leads
to a correct description of Cooper pairs at high densities,
and even to tightly bound pairs in the low-density limit.
In this one-component procedure, the pairing interaction
v has been assumed a priori, and is usually taken from

r

H[o,*,e„%'p,e'p] =P dxe*(xz)e, ( —ihV)e, (xz)
a

heuristic arguments defining the fermion problem in the
phonon or some other picture.

In this Letter we show that pairing can actually be es-
tablished at a more fundamental level, starting with the
system viewed as a neutral mixture of electrons (a =e)
and nuclei (a =p) (protons will be the example chosen)
with bare Coulomb interactions, alone. The equivalent
of (3) is then

+ —, gz, z dxdy +,*(xz)W,*(yz)v, (x y)W—, (yz)+, (xz)
a'

where z~ =+ 1, z, = —1, and v, is now e /~x —
y~, the fundamental Coulomb term (which is strictly independent of spin

s). The action is

4 0
dz dxg e.*(xz) h —p. e.(xz) +HA,*(xz),e, (xz);op (xz), e~(xz)]

r Ph
dz„dxdyg e.*(xz)6(x —y) h

a
+~.( —thv) —p. e.(yz)

P~
+ —, dxdy dr+*(xyz). V(xy) +(xyz) .

Here [cf. (6)] the transpose of + is

e (xyz) —= (e,*(xz)e,*(yz) e~ (xz)ep (yz) e,*(xz)ep (yz) e~ (xz)e,*(yz)),
and

1 0 0 0
0 1 0 0

V(xy)—= vp(x y) p p 1 p

0 0 0 —1

(14)

(15)

(i6)

The compactness of the form (14) for 5 is entirely a consequence of the symmetry of the Coulomb interaction. A HS
transformation on (14) leads to an immediate generalization of (4), namely,

Z =const x D [+*]D [%']D[h*]D[A] exp[5 [+*,e;a*,A]/h],

where the companion of (5) is

$[%'*,0';l*,h] =
J d 1 d2[ —,

' 4*(1) [—A(12)].4(2)+ —,
' A*(12).V '(12) h(12)] .

In (18) @ is the generalization of (6), V is the formal inverse of (16), and A is the expected generalization of (7),
namely,

~„(12)

(i9)

'S(12)(h a/az+ g, ) ~„(12) 0

A,*,(12) 8(12)(h 8/Bz &, ) &—,* (12) 0

0 ~„(12) ~(12)(h a/ez+ g, ) ~„(»)
~,*,(12) 0 6* (12) 6(12)(h 8/Bz &), —

where we have used the notation g, =e, ( —ihV) —p, . Here h,~(12) are the components of the vector A(12) appearing
in (18). Gaussian integration over the Grassmann variables leads to the extensions of (8) and (9), which are still ex-
act, and via the stationary phase approximation to four gap equations, the immediate generalization of (11),namely,

A„(k) = —g, , [[t1(k') —t 3 (k') ] +D„(k') [y 3 (k') —y 1
(k') ]]

v, (k —k') a„(k')
k' 2[ri k' —r3 k' (2P)
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and

A,P(k) =++ 2, ~, [[t )(k') —t3(k')]+D,~(k') [y3(k') —y|(k')][,, (k —k') ~„(k')
(21)

with corresponding equations for h~p and h~, . Here we introduce the notation

t; (k') = r; (k') tanh [ —, Pr; (k') ],
y;(k') =—tanh[ —,

'
ljr; (k')]/r;(k'),

D„(k') =(~(k')+ IA»(k') I

—Ape(k')h, p(k')A~, (k')/A„(k'),

and

(22)

(23)

(24)

D,~ (k') =g, (k') (p (k') +A,p (k') d~, (k') —A„(k')A» (k') A~, (k')/Ap, (k'),

again with corresponding equations for D~~ and D~, . The quantities r
~

and r3 are defined by

(k') = [D'(k') ~ D'(k')/2] '"
with

D' = —,
' [!~„(k')I'+!~»(k') I'+ 2 Re[~„(k')~,*,(k')]+ g,'(k')+ g,'(k')[

(2S)

(26)

(27)

D (k') =r
i
(k') —r3 (k') =( [Iae (k')

I Ia»(k')
I +0, (k') —&~(k')]

+4~,p(k') ~p, (k') [l~„(k')I'+ l~» «')
I

'+ 4, (k') —
( p

«') ] '~

+ 8 Re [A„(k')a (k') A,* (k') A*, (k') ] ) 't' . (28)

The above system of equations is necessarily more
complex than the one-component case. But, correspond-
ingly, there is a remarkable richness of physical structure
in its solutions. Further, the equations possess some for-
mally transparent limits. First, when A,~ (and A~, ) ap-
proaches 0 there is an expected decoupling of Eq. (20)
and of the parallel equation for A~~ into two BCS gap
equations corresponding to e-e and p-p pairing. These,
of course, have no solution, since the interactions are
bare Coulomb repulsions. Next, for the complementary
case of A„(and 5») approaching 0, Eq. (21) leads to a
gap equation of the "excitonic-insulator" type for the
cross-order parameter. More generally it is straightfor-
ward to show' that in aII cases, a nonvanishing A,~ al-
ways has an attractive effect, i.e., the effective interac
tions between identical particles are always less repul
sive than the bare Coulomb interaction.

There are also some physically expected limits of Eqs.
(20) and (21), associated with the case d„,/A, ~ (and
6»/A, ~) approaching 0. Two general classes of solutions
develop, depending on whether !A,~! is small or large
compared to the product g gp, with [a,P] = (any of
[e,pj). To examine whether solutions to (20) and (21)
actually exist in principle we may take all 4,~ to be real
and isotropic (s-wave singlet states). The following re-
sults then emerge. '

(a) Solutions corresponding to IA,~I &&g,gp for any k
are possible only for sufTiciently low densities, particular-
ly when p, and p~ are both negative. At low density and
low temperature the cross-order parameter has the form

A,~ (k) =const x [g, (k) + g~ (k) ]/(I + k a ), (29)

!
with a =h, /m*e . From a canonical analysis of the
same problem in terms of the wave function pt, of a sin-
gle pair it can be shown that the relation between A(k)
and pt, is

I&«) I

' =4(«) 'I e~ I
'/(I —

I @~ I') '.
In the low-density limit &I, 0, and by noting that the
Fourier transform of e "t' (a Is state) is proportional to
(I+k a ), a comparison with (29) shows that this
solution corresponds to an atomic e-p state. This is con-
sistent' with the Heitler-London form for the H2 wave
function in the limit m, /m~ 0. We therefore recover
in this limit the expected phase of weakly interacting hy-
drogen molecules.

(b) The second class of solutions corresponds to !A,„!
»g, gp for some k & kp. In this case h,~ can be approxi-
mated by'

h,„(k)=(e /tr)kpF(k/kp), (31)
where

F(x) =—+ ln
1 1

—x 1+x
2 4x 1

—x

is recognized as the Lindhard function, and ko is deter-
mined by

2A (ko) =14 (kp)+& (ko) I (32)
This is entirely different from (29) and is valid' only at
sufficiently high densities [up to the point that (32) actu-
ally fails to give a real and positive solution for kp]. We
therefore see the possibility of a discontinuous transition
from the low-density molecular phase to the high-density
phase described by (31). This transition was anticipated
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recently but through a diAerent procedure. The high-
density phase is readily associated with a delocalization
of the electronic component, i.e., a given electronic pair
no longer belongs to a particular Hq molecule. As a re-
sult, the two components can now be discussed separate-
ly in terms of effective one-component problems. Thus
by comparing (20) (or the corresponding equation for
t5~~) with (11) we can easily determine the effective
pairing interaction associated with each component.

As a criterion for stability of the paired phases we in-
voke the requirement that there are at least some regions
in k space where the eA'ective interactions become nega-
tive. The major results' for this case are the following:
(i) In the high-temperature limit there are no solutions
to (20), as physically expected. (ii) When temperature
is lowered, solutions to (20) emerge, especially when the
cross-order parameter h,,~ is suKciently strong. An ac-
curate low-temperature approximation for h, ,~ is given

by (31). We note that solutions to (20) and to the corre-
sponding equation for Ap~ then do emerge because of the
development of eA'ective attractions in certain regions of
k space for the e eand p -pchanne-ls. (iii) A critical
point T, is found where the order parameters h,„and
/3.„~ both vanish (as T T, from below). At the same
time the regions of attraction for e-e and p-p channels
intersect at a value k of k, where the sum of the single-
particle energies of an electron and a proton equals the
total chemical potential p, +p~ [i.e., g, (k)+(~ (k) =0].
(iv) The self-consistent solution is such that T, is re-
quired to be small compared to the energy scales of the
problem (in agreement, as it happens, with recent experi-
mental results'" on hydrogen). A simple approxima-
tion for T, for strong h,,~ turns out to be

kgT, = A,p—

(33)
where the ratio tt—=A~~/A„ is expected to approach unity
as T T, as can be verified by using the structure of the
full equations at low temperature and l'Hospital's rule in
the limit that both 6's vanish. [All quantities in (33) are
evaluated at k =k. ] (v) An inverse isotope effect is ex-
pected for the dependence of T, on the protonic mass;
this also happens to be in agreement with recent data. '

By way of practical application of case (b) we analyze
two models: one for a diA'usive state, and another for
protons treated as Einstein oscillators vibrating within
preformed p ppairs (remna-nts of the low-density
Heitler-London fields discussed above). The electrons
are assumed to be fully degenerate in all cases and the
chemical potentials necessary for these applications are
taken from our recent work. ' The first model is a satis-
factory description of possible generalized pairing in an
electron-hole liquid and a primary result is that pairing
of identical particles will not occur if the masses are
identical; only simple e-p pairing of the excitonic type is
predicted. However, as m~/m, is increased from unity,
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an increasing region in k space develops around the Fer-
mi surface where eAective attractions between identical
particles then result. The second model is a possible
description for dense molecular hydrogen, with the elec-
tronic component being in semimetallic or metallic form.
Here, as noted, a discontinuous transition may occur for
T & T, as we move from higher to lower densities, espe-
cially to densities beyond the point where the electronic
chemical potential becomes negative. From this point on
we have to deal with case (a).

To summarize, we have given a generalization of the
BCS theory for simple pairs to a problem of a two-
component system with all possible kinds of pairings, but
starting from fundamental Coulomb interactions. So far
as we are aware this theory constitutes the most general
description to date of a two-component system with
Coulomb interactions in ranges of density and tempera-
ture where pairing structures can be formed. It is impor-
tant to emphasize that it does not employ the usual
Born-Oppenheimer separation, so that fluctuations of
both components are treated on the same footing. It is
also a first-principles treatment of a many-body system
which has an actual physical realization, namely, hydro-
gen, for which it gives an account of the existence of a
relatively low-temperature critical point and an inverse
isotope eAect, both observed recently.

Finally, the interrelationship demonstrated here be-
tween electron pairing and a structural singularity (in
the proton pairing) is a matter we are investigating fur-
ther from the standpoint of its possible application to
high-temperature superconductivity.
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