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Kinetic Roughening in Molecular-Beam Epitaxy
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We extend a continuum model recently proposed by Villain [J. Phys. I (France) 1, 19 (1991)]to study
equilibrium and nonequilibrium diffusion on a high-symmetry surface under a fluctuating particle beam.
Exponents characterizing dynamic scaling in various regimes are derived explicitly in all dimensions, as
well as the relevant lengths which separate these regimes. Different surface morphologies are correlated
with experimentally accessible parameters such as substrate temperature and deposition rate.
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In vacuum deposition experiments, epitaxial growth of
a crystalline film is usually achieved through surface mi-
gration of newly arrived atoms to the energetically more
favorable ledge and kink sites. ' The morphology of the
film surface is thus sensitive to the beam intensity which
controls the nonequilibrium adatom population, and to
the substrate temperature which influences the rate of
surface diffusion. Even in the case of stable growth, one
encounters diAerent forms of kinetic roughness, ranging
from mere terrace width fluctuations, as in step-flow
growth on a vicinal surface at elevated temperatures, to
the nucleation of islands on islands, which occurs at
lower temperatures when the mobility of the surface
atoms is much reduced. '

Recent theoretical studies of driven interfaces have fo-
cused on elucidating the role of symmetry and conserva-
tion laws in determining dynamic universality classes.
These interfaces or surfaces typically exhibit self-affine
structures both in space and in time: The height fluctua-
tion across a distance L in the surface scales as I.~, and
has a lifetime proportional to L'. Here g and z are
known as roughness and dynamic exponents, respective-
ly. In molecular-beam epitaxy (MBE) the primary re-
laxation mechanism —surface diA'usion —conserves the
mass of the film. If the vacancy concentration in the film
does not vary during growth, mass conservation
translates into volume conservation described by a con-
tinuity equation:

az/at+tv j=F.
Here Z(x, t) is the film thickness above a substrate site x
at time t, j is the particle-number current density within
the surface, 0 is the atomic volume, and F is the beam
intensity which we take to be independent of Z. Equa-
tion (1) distinguishes surface diA'usion from other relax-
ational processes such as desorption. Indeed, the generic
continuum description in the latter case is given by the
Kardar-Parisi-Zhang (KPZ) equation ' which, howev-
er, is incompatible with the conservation law imposed by
(1).

Villain' recently proposed a continuum model of the
form (1) which includes nonequilibrium terms that are

p = QSV/6Z, (3)

and jpeq the nonequilibrium correction to jeq In the fol-
lowing we shall consider (3) on a semimicroscopic level
by postulating a Ginzburg-Landau free energy of the
form'

O' =J d x [ 2 I (VZ) + V(Z) ], (4)

consistent with in-plane isotropy and a continuous
translational symmetry in the growth direction. These
terms were shown to reduce the extreme roughness in-
duced by the shot noise (beam fiuctuation) if the surface
were to relax via equilibrium surface diff'usion' alone.
The surface is nevertheless rough on all length scales at
and below (2+1) dimensions. In this Letter we extend
Villain s model by including two additional terms which
are likely to intluence small-length-scale features: (i) a
lattice-pinning term which reduces the continuous
translational symmetry to a discrete one; (ii) a conserv-
ing component in the noise arising from the stochastic
nature of surface diA'usion on the atomic level. In the
limit of vanishing beam intensity, we arrive at the equi-
librium sine-Gordon model' ' with a conserving dy-
namics. As in the case of nonconserving dynamics, ' ' a
finite growth velocity diminishes lattice pinning on
sufficiently large length scales, at which point the model
proposed by Villain is recovered. The roughening behav-
ior of the latter model is analyzed in a renormalization-
group (RG) treatment which yields the exponents pro-
posed by Villain. ' On smaller length scales and below
the thermal roughening temperature TR of the equilibri-
um model, the lattice-pinning term may become dom-
inant, leading to the formation of faceted areas on the
surface. We show that, under a nonconserving noise,
faceting on arbitrarily large length scales is not possible
at and below (2+1) dimensions, even if the surface is
not moving.

For a sufficiently weak beam, it appears reasonable to
write

j =jeq+ jneq ~ (2)
where j,q is the (quasi)equilibrium part driven by the
gradient of the chemical potential '
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where I is the surface stiffness constant, V(Z+ a )
=V(Z) is a "lattice-pinning" potential which has its
minima at integer multiples of the layer spacing a, and d
is the dimension of the surface C. orrespondingly, we
take j,q to be of the Langevin type and write, in accor-
dance with the Nernst-Einstein relation,

j.q= (p D—/kaT». i +i p (5)

The appropriate form for the nonequilibrium current

jneq in the context of MBE is less clear. In principle, jneq
could contain terms of the same type as in j,q, resulting
in a redefinition of the equilibrium parameters such as
the temperature T and the adatom concentration p, .
More importantly, j„,q may contain new terms which
cannot be obtained from (3)-(5), and which govern dy-
namic scaling on sufficiently large length scales. For a
high-symmetry surface, Villain' proposed the following
expression:

j„,q = —(v/n )VZ —(a/2n)V(VZ) '. (6)

This choice is consistent with the translational symmetry
Z Z+a which excludes terms like VZ . Phenomeno-
logically, the v term in (6) indicates a downhill (or
uphill) current for a surface tilted away from the high-
symmetry direction. ' Though absent in the equilibrium
problem when gravity is negligible, such a current could
be justified under the growth condition. ' The a. term
cannot be obtained from a free energy and it also
behaves diAerently from the v term under the transfor-
mation Z —Z. Only stable growth (v) 0) will be
considered here.

To complete the definition of the model, we write
F=Fp+f, where f represents fluctuations away from an
average beam intensity Fp. For simplicity, we shall also
assume V(Z) = —Vpcos(2tzZ/a). The final equation of
motion for Z takes the form

tIZ p 4 G'= VV Z —yV Z+ —V (VZ)
Bt 2

+ vV sin(2tzZ/a)+Fp+ tI . (7)

Here y=p, D, Q I /keT and v =27rp, D, D Vp/akeT.
The noise tI =f QV. jp is assume—d to be Gaussian dis-
tributed with zero mean and the following correlator:

&iI(x, t) t( rtx')) =2236d(x —x')6(t —t'),
g) =Dp —DtV +DERV

(sa)

(Sb)

where Dp= A, Fp/4 and D~ =0 p, D, . The D2 term is of
technical importance only.

Equation (7) has sufficient complexity to allow for a
number of diAerent spatial scaling regions which
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where D, is the surface diffusion coe%cient, p, is the sur-
face density of the diAusing species, and jp is the sto-
chastic current due to thermal fluctuations, with

(j p; (x, t)j pp(x', t')) =2p, D, 6;t, B (x —x')8(t —t') .

presumably also exist in experiments. To illustrate the
point let us consider the solvable case a =v =0. ' De-
pending on the relative strength of v and y, two dynami-
cal regimes are identified with

z=4, L&(L, ,

z=2, L»L„
(9a)

(9b)

where L, =(y/v)'t and L is the length of interest. A
second length scale

Lf = (Dl/Dp) —(Ap, D /Fp)

separates two scaling regimes of the noise such that

z =2g+d+2, L «Lf,
z =2(+d, L » Lf .

(10)

(I I a)

(1 lb)

The combination of (9) and (11) yields explicit expres-
sions for both exponents, applicable in respective re-
gimes. For instance, in the regime where the shot noise
dominates and is relaxed only by (quasi)equilibrium sur-
face difl'usion, i.e., Lf«L«L„we have g=(4 —d)/2,
z =4. '' Asymptotically at v&0, Dp&0, we recover the
well-known Edwards-Wilkinson (EW) result g=(2 —d)/
2, z =2, ' for which the critical dimension is d=2. Oth-
er exponents are possible below L,f. In MBE, Lf may
vary by many orders of magnitude due to the Arrhenius
law D, —cpoexp( Et,/keT), —where cpD —10' sec ' is
the Debye frequency and Eb the activation energy for
nearest-neighbor hopping. Taking Eb =1 eV and p, —1

, a deposition rate Fp —1 A/sec yields Lf «1 A at
room temperature but Lf—10 A at 500'C.

Simple power counting shows that the v term also
dominates the two nonlinear terms in (7) in determining
the asymptotic scaling, so that the asymptotic result of
the linear theory remains valid in general. The
remainder of the paper is devoted to the case v=0. For
a small but finite v, our discussion is valid in the regime
L «L, = (y/v) 't, keeping in mind that y is subject to re-
normalization by the nonlinear terms.

Because of the conserving form assumed by (7), the
average growth velocity is not renormalized by surface
Auctuations. By going to the comoving frame Z

Z+Fpt, the constant Fp drops out, but a phase factor
2tzFpt/a appears in the argument of the lattice potential.
This suggests that growth averages out the eA'ect of lat-
tice pinning on modes whose lifetime exceeds zp=a/
Fp. By invoking dynamic scaling, one may define a
length scale LF —zp ', such that only Auctuations with
wavelengths smaller than LF feel a nonzero v. The ex-
ponent z, of course, is determined by the dynamics below
LF. Equation (7) is now considered separately above
and below LF.

(a) L &LF —In this regime the con.tinuous transla-
tional symmetry in the Z direction is restored. We ana-
lyzed Eq. (7) at v=v =0 in a dynamic RG scheme simi-
lar to the one applied to the KPZ equation. ' After in-
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tegrating out fast modes in the momentum shell
e 'Ap( ~k~ (Ap and performing the rescaling x e'x,
t e't, Z e~Z, the coefficients of various terms re-
normalize as, in a one-loop approximation,

dy/dl = [z —4+ (Kd/4d)g] y,

do/dl =(g+z —4)o,
dDp/dl = (z —2g —d)Dp,

dD|/dl = (z 2g d 2)D i,
dD2/dl = (z —2(—d —4)Dq

+(K,/4)(g, +g, +g, )DA

(i2a)

(i2b)

(12c)

(i2d)

(12e)

dv/dl =(z —
g —2 —n)v+0(v'),

dy/dl=[z —4+(rc /2)Ad(n, rc)y ]y,

(14a)

(141 )

and da/dl = —ga. Here n =2n Kd(Dp+D~)/ya, y
=v/ya, Ic=Dp/D~, and Ad(n, rc) is a positive function of

n and K in the range of interest. For simplicity we have
set Ao=l. The two coefficients Do and D[ in the noise
correlator renormalize the same way as in (12c) and
(12d). In terms of the dimensionless parameters y, n,

where Kd ' =2 'n I (d/2), D =Dp+D~Ap+D2Ap,
g;=D, A pd'+"a'/y', i =0, 1,2, and g=g =p(6 —d
—2i)g; From. (12e) we see that the D2 term is generat-
ed by DO and D~. This term influences the location of
fixed points but not the exponents.

Although Eqs. (12) were obtained in a perturbative
expansion up to first order in the g;, it is evident from the
RG scheme that (12c) and (12d) are free of higher-
order corrections. We thus expect Eqs. (10) and (11) to
hold generally (see also Refs. 5, 6, and 10). A more cu-
rious result is (12b). Along with (1 1 b) it provides,
~i/bin the one-loop approximation, a confirmation of
the exponents proposed by Villain, '

g=(4 —d)/3, z =(8+d)/3.

(b) L &LF —Equation (7). is now considered within
the time interval ro over which the surface advances by
one layer on average. The strength of the v term on a
given length scale is subject to renormalization due to
fluctuations on smaller length scales. Here we discuss
this eflect in a perturbative RG scheme introduced by
Nozieres and Gallet, ' including only the y term, the v

term, and the noise on the right-hand side of Eq. (7).
This is justifiable since the remaining nonequilibrium
terms in the equation could be expected to be less
relevant in this regime, and in any case the simplified
analysis serves as a starting point for further improve-
ments.

To second order in v, the RG flow equations for the re-
normalized coefficients after the scaling transformation
take the form

and x, we have

dy/dl =y(2 n——cy ),
dn/dl =n [2 —d, tr

—(n' /2)Ady

dx./dl =2',

(1sa)

(15b)

(isc)
where d, p. =d —2x/(I+rc). The exact form for (15c)
requires the knowledge of the third-order term in (14a).

Equations (14) and (15) have the familiar look of the
Kosterlitz-Thouless RG flow equations. ' Indeed, by set-
ting K =0 results for the equilibrium sine-Gordon model
are correctly reproduced, ' ' though the dynamics here
is purely conservative. Recall that in the equilibrium
model, an arbitrarily small v grows under the RG trans-
formation above d=2, so that the surface is faceted at
all temperatures. For d =2 —t.', t. ~ 0, there is a
roughening transition at a finite temperature TR. As
readily seen from Eqs. (15), the nonconserving noise can
be accounted for qualitatively (but not quantitatively) by
the varying efrective dimension d, &, such that d, [f =d for
x « 1 (L «Lf) and d, tr

=d —2 for x &) 1 (L» Lf) As.
the length scale is varied, the RG flow samples the phase
diagram of the equilibrium problem at various dimen-
sions. '" In particular, for d ~ 4, there is the possibility
that the RG trajectory starts out in the faceted phase,
implying a faceted regime on small length scales, and
ends up in the rough phase, meaning that facets of linear
size larger than Lf are destroyed by the shot noise.

The faceted regime discussed above in (2+1) dimen-
sions coincides with large terraces and two-dimensional
islands observed in MBE experiments. The following ar-
gument shows that, no matter how strong the lattice pin-
ning, the surface cannot remain faceted on arbitrarily
large length scales under a nonconserving noise at and
below (2+ I) dimensions. Suppose that the contrary is
true. Fluctuations of sufficiently long wavelengths
should be limited to the bottom of a particular well of
the lattice potential. It then makes sense to expand the
sine term in (7) around such a minimum, say Z=O.
Neglecting irrelevant nonlinear terms, the resulting
equation is the EW type which, however, predicts un-
bounded height fluctuations for d ~ 2, inconsistent with
our assumption.

It is interesting to speculate on what actually limits
the size of faceted areas in MBE. Under the growth
condition, the strength of lattice pinning is dramatically
weakened on the length scale LF, at which point surface
fluctuations proliferate. Thus, at sufficiently high mobil-
ity of adatoms and well below TR, we expect LF to be
the limiting length for the size of faceted areas on the
surface. In the opposite case, the v term never becomes
sufticiently strong to produce pinning, as seen from Eqs.
(15), so that the faceted regime is altogether absent. In
reality, the roughness of the substrate may also influence
faceting of the film surface at early times.

To summarize, we presented a detailed analysis of a
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continuum model which includes all relevant terms com-
patible with the symmetries and the conservation law for
the surface diff'usion dynamics in MBE. Explicit expres-
sions for the roughness and dynamic exponents in various
scaling regimes were derived, as well as the relevant
lengths which separate these regimes. In the physically
interesting case d=2, fluctuations in the beam intensity
were shown to destroy arbitrarily large facets which exist
for an equilibrium surface below the thermal roughening
temperature.

The behavior of the surface in the faceted regime is

not properly described by Eqs. (15). By expanding the
pinning potential at Z=O, one obtains a diff'usive relaxa-
tion of fluctuations on the terrace with z =2 (see Grin-
stein and Lee, Ref. 6). On the other hand, such a treat-
ment is inadequate for fluctuations across the wells, i.e.,
whose amplitude exceeds the layer spacing a. The dy-
namics in this regime, and in particular how the size of
faceted areas diverges as Fp 0, remain as challenging
open problems.
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