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A heuristic criterion is introduced and applied for derivation of percolation thresholds in continuum
systems. The criterion is comprehensive in the sense that it applies to systems with diverse bonding cri-
teria as well as to systems with a correlated distribution of sites. Its usefulness is manifested by the ex-
cellent quantitative agreement between the values obtained and available Monte Carlo data.
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In the last few years it has been shown that the prop-
erties of percolation processes in continuum systems'
cannot be predicted simply by using results obtained
from lattice percolation models. In particular, diversity
in geometrical shapes, size distribution, and correlations
between objects (such as those due to interactions) can-
not be incorporated into these models. There are
numerous applications for the understanding of the cor-
responding systems in many fields, including porous
media, conduction in atomically disordered solids,
polymers, composite materials, and microemulsions.

The most important parameter to be known for such
percolating systems is their percolation threshold, i.e.,
the critical concentration of the objects at which an
infinite connected network appears. While the critical
behavior in percolating systems is universal and has been
extensively studied, the percolation threshold shows
great sensitivity to system parameters. ' Hence a further
"unification" of percolation theory can be served by
finding a single analytic approach for the determination
of the thresholds. In the continuum, the threshold con-
centration depends on the shape and orientation of the

objects as well as on the correlations between the posi-
tions of their centers (hereafter, sites). So far, no gen-
eral theory, or even a general analytic approach, has
been proposed for a comprehensive determination of the
percolation threshold in the above variety of continuum
systems. The available analytic results are accurate thus
far only for simple randomly placed objects, ' and as for
interacting objects, only qualitative agreement between
analytic results and computer simulations for the system
of hard-core-soft-shell spheres has been obtained. ' ' For
all other systems' and for more realistic interactions
only Monte Carlo results are available.

In view of these considerations and the appreciation of
the difhculties associated with the development of a
rigorous comprehensive theory, ' it appears that a gen-
eral, though heuristic, argument which yields accurate
values for percolation thresholds in the continuum can be
of great use. Such a criterion is suggested in this paper.
As far as we know this is the first simple criterion that il-
luminates the interplay between short-range correlations
and macroscopic connectedness in percolating systems.

In view of the importance of percolation thresholdlike
quantities in the theories of random systems, the insight
gained from this criterion may also have an intrinsic
value beyond the immediate interest of the present
Letter. As we show below, all one actually needs to
know, in order to apply the criterion, are the systems'
most basic parameters, i.e., the shape of the objects and
the interaction potential between them. Surprisingly,
while being quite simple, it yields extremely accurate
values for the percolation thresholds as demonstrated by
the excellent agreement with available Monte Carlo re-
sults.

To specify the criterion, we consider systems in which
pair connectedness between sites is defined by object
overlap (see below). The percolation threshold is the
density of sites (object centers) at which an infinite clus-
ter is first formed. We heuristically derive an equation
for this density by comparing two fundamental char'ac-
teristic lengths of the system: The first is the average
"bonding distance" l which we define as the mean dis-
tance between two connected sites. The other charac-
teristic length, L, is the average distance between sites
which have at least two sites connected to them (hereaf-
ter referred to as neighbors). Such sites may be con-
sidered as the basic building blocks of the infinite-
cluster's backbone, since sites with less than two neigh-
bors may, at most, belong to dead ends. Sites with two
or more neighbors are surrounded by objects whose
centers lie, by definition, at an average distance of l.
Therefore we consider an ideal gas of such sites, each
surrounded by a sphere of radius l, which electively rep-
resents its mantle of nearest neighbors. We postulate
that percolation occurs when these effective spheres be-
gin to overlap, i.e.,

Loosely, this criterion corresponds to demanding that, on
the average, the multineighborhood sites be connected
(at least by a common neighbor) to other such sites,
thereby propagating connectedness.

To demonstrate the application of our new criterion,
we start our discussion with randomly centered (perme-
able) objects. For simplicity and because of practical
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applications, we consider in this work three-dimensional
systems. Correspondingly, we define the excluded vol-

ume of an object, V,„, as the volume in which two ob-
ject centers have to be in order for them to overlap (e.g. ,

for a system of spheres of radius R, the excluded volume
is a sphere of radius 2R). The mean distance between
connected sites, l, is then given by

l =V ' rdr
where the integration is over the excluded volume. We
note that our percolation criterion is not too sensitive to
the type of averaging used' in the definition of l.

To approximate L, we consider a system of volume
0 (» V,„) in which sites are distributed randomly with a
density p=N/A. The number of neighbors per site is

known to follow the Poisson distribution:' The proba-
bility for a site to have k neighbors is (8"/k!)exp( —8),
where B is the average number of neighbors per site. In
the case of permeable objects, B =pV„. Hence, p', the
eAective density of sites with at least two neighbors, is

p'=p[1 —(I+B)exp( —8)] . (2)

The average volume per site of sites with at least two
neighbors is now v =1/p'. Assuming that this volume is

spherical, we have

L =2(3/4'') '/'.

Our suggested percolation criterion is

L =2l.

(3)

(4)

Using Eqs. (2)-(4), this criterion becomes

8, [1 —exp( —8, )(1+8,)] =(lp/1) (5)

where lp=(3V, „/4')'/ is the radius of a sphere of
volume V,„, and B, is the critical number of bonds per
site (8, =p, V,„). We find from Eq. (5) that the only
object-dependent parameter which determines the per-
colation threshold is the dimensionless geometrical pa-
rameter 1/lp. Hereafter we name this parameter the
"pointedness" of the object. The pointedness is essential-
ly a measure of the object's departure from sphericity:
Objects with sharp edges or protrusions have a higher
pointedness than more "spherical" ones. According to
Eq. (5) the "pointier" the object, the lower the thresh-
old. This is in accordance with previous analytic' and
Monte Carlo' ' results. Using Eq. (1) to calculate 1,

finding 8, from Eq. (5) is straightforward. We present
in Table I the pointedness, the calculated B, values, and
results from Monte Carlo simulations, ' ' for perme-
able spheres and permeable parallel cubes. The compar-
ison of the two sets of B, values demonstrates the accu-
racy obtained by the presently suggested percolation cri-
terion. If we repeat the same procedure [Eq. (5)] for
two-dimensional systems, the results obtained are quite
far off' the correct B, values which are taken from Refs.

TABLE I. The pointedness, the calculated 8, values, and
results from Monte Carlo simulations, for some permeable ob-
jects.

Spheres
Cubes
Circles
Squares

Pointedness

J3/5 =0.7746
(7T/6) ' =0.8060
J1/2 =0.7071
d~/6 =0.7236

Calculated 8,

2.796
2.604
4.42
4.35

8, from
simulations

2.8 ~ 0.05
2.6 ~ 0. 1

4.5 ~ 0. 1

44&0 l

10 and 13. On the other hand, we can obtain excellent
results for the two-dimensional systems in accordance
with our approach which is founded on the basic building
blocks of the infinite-cluster backbone. This is done by
noting that the 8, values for two-dimensional systems
composed of permeable objects are of the order of 4
(higher than those of three-dimensional systems).
Hence we conclude that the basic building blocks are
sites of higher connectedness than sites in three-
dimensional systems. Indeed, by using Eqs. (2) and (5)
with the subtraction of the k ~ 4 terms in the Poisson
distribution, we can predict accurately the B, values for
two-dimensional systems. This is well demonstrated by
the values given in Table I. We also found such an ex-
cellent agreement in other two-dimensional systems. In
fact, finding that the latter procedure yields such accu-
rate results indicates that our basic physical picture of
the building blocks is sound.

Let us turn now to the problem of calculating the per-
colation threshold in systems with a correlated distribu-
tion of sites (e.g. , sites distributed as though they were
interacting particles). Connectedness is defined by over-

lap of permeable shells that surround each site. For this
paper's purpose, we define the generalized "excluded
volume" as the volume in which the corresponding
permeable object centers would have to be in order for
their shells to overlap. For example, for a system of
hard-core-soft-shell spheres of shell diameter d and
hard-core diameter o, the excluded volume is a sphere of
diameter 2d. The correlations in the site distribution are
characterized by the radial distribution function' g(r),
where pg(r)d r is the probability of finding a site (an
object center) in a volume d r at a distance r from a site
located at the origin. The bonding distance I is now
given by a weighted average over the above defined ex-
cluded volume, i.e.,

l~= r2g(r)d r g g(r)d r.
This definition of l gives regions within the permeable
shell, in which it is more probable to find other sites,
greater weight than to less populated regions.

To define L, the mean distance between sites bound to
at least two other sites, we must calculate the probability
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that at a given density a site has either one or no neighbors. We approximate this probability by maintaining a Poisson
distribution for the number of neighbors per site: The probability that a site has k neighbors is assumed' as above to
be (8 /kt)exp( —8), but now 8—the average number of bonds per site—is given by

8 =p g(r)d'r.

Correspondingly, the definition of L [Eqs. (2) and (3)] is now given by
]/3

II'

L=2 (4'/3)'1 — exp —p g(r)d r 1+p g(r)d r

Using our percolation criterion Eq. (4), we now derive [as in Eq. (5)] a general equation for the critical density p, :

' 3/2

(7)

(p, V„)' 1 — exp —p, g(r)d r 1+p, g(r)d r '=(3V,„/4n. )
&

g(r)d r r g(r)d3r

0, r&a,
go(r) = e', o & r & X,

1, r&k.

Using the definition of I [Eq. (6)] we obtain

-', [(1+v'e') —(v'+ rl'e')]

Io, (1+v'e') —(v'+ rl'e')

where again lo=[(3/4')/V, „]'~, v=X/d, tl =cr/d, and d
is the permeable shell diameter. Turning to the average
number of bonds per site [Eq. (7)l, we have

8(p) =8[(1+v'e') —(v'+ q'e') l, (12)

It is now very simple, given g(r), to calculate the per-
colation density p, for systems of interacting objects.
We present the results of such calculations for systems of
hard-core-soft-shell spheres and for systems of spheres
with a hard core and an attractive square-well potential.
For these simple interactions, adequate approximations
for g(r) are known' and results of Monte Carlo simula-
tion are available "for B,.

The zeroth-order approximation of g(r) in powers of
density is simply go(r) =exp[ —U(r)/kaT] where U(r)
is the pair potential and k&T the thermal energy. ' Thus
for spheres of hard-core diameter o., square-well range X,
and depth Uo = —eke T, we have

4.0
gI V

gp
Simulat]o

i
tion function are known to be extremely accurate for low

and intermediate hard-core densities. '

Our results for the threshold density of a system of
hard-core-soft-shell spheres as a function of the hard-
core fraction'" ' tl=o/d are shown in Fig. 1, along
with the available Monte Carlo results. Our results for
hard-core-soft-shell spheres with an attractive square-
well potential are compared with those of a Monte Carlo
simulation in Fig. 2.

As we see in Fig. 1, even for the zeroth approximation
in g(r), the presently calculated thresholds are very close
to the Monte Carlo results for g (0.9. It is particularly
striking that, as shown in Fig. 2, our results accurately
follow the wide variations in p, . When g goes to 1, how-

ever, our result for p, diverges (unphysically). The
zeroth-order approximation of g(r) is adequate because
of the low hard-core densities p, g for all but the highest

g. The calculation of p, in this approximation may be
easily performed for any potential.

The general behavior in Fig. 1 may be qualitatively
understood ' in light of the new percolation criterion.

where 8=(4zd /3)p=V, „p. In the case of no interac-
tions 8 (p) =8 =8 as expected.

Hence, for a general case including interactions, our
new percolation criterion is just

(I/Io)'=8, [1 —exp[ —8(p, )][1+8(p,)]}, (13)

O

3.2

8 aa agI

where Bc = Vexpc-
We improved our approximation of g(r) for systems of

hard-core-soft-shell spheres by using the Percus- Yevick
(PY) approximation, ' ' gpv(r). For hard-core spheres
with a square-well interaction we used then the approxi-
mation' g(r) =gpv(r), where gpv(r) is the PY correla-
tion function for spheres of corresponding hard-core di-
ameter. The approximations based on the PY correla-

2.4 i i i i I i I

0.0 0.2 0.4 0.6 0.8 1.0
q=ar'd

FIG. 1. Presently calculated threshold density for hard-
core-soft-shell spheres. The shell diameter is d and the hard-
core diameter is a = gd. The dashed curve represents the
present calculation using go(r), and the full curve, the present
calculation with gpv(r). For comparison we show the simula-
tion results (dots) reported in Ref. 9.

2881



VOLUME 66, NUMBER 22 PHYSICAL REVIEW LETTERS 3 JUNE 1991

x 2.4

2.0
CL

~ I

0.0 0.2 0.4 0.6 0.8 1.0
q= or'd

FIG. 2. Presently calculated threshold density, compared
with the simulation results of Ref. 9, for a system of hard-
core-soft-shell spheres with an attractive square-well potential.
Shell diameter is d, hard-core diameter is a, well diameter is
k=a+0. ld, and the well depth is e'= —Uo/ksT=2. 08. Ap-
proximations used for g(r): dashed curve, gp(r); full curve,

g pv(r)

BrieAy, as g increases, the volume available for overlap
decreases, the density of sites with more than one neigh-
bor decreases, and in order to achieve percolation an in-

crease in p, is required. On the other hand, with increas-
ing g the average distance between overlapping objects
increases, thus yielding a higher pointedness, and hence
a lowering of p, . The second effect is dominant for small
hard-core fractions, while the first becomes important for
large hard-core fractions. The competition between the
two effects produces the minimum observed in Fig. 1.
The addition of attractive interactions causes the
minimum to deepen and a new maximum in p, to appear
at low q. This is a result of the strengthening of the
above effects due to increased clustering. The deep
minimum in p, validates the use of go(r) for strong at-
tractive potentials, even for large hard-core fractions.
Thus the new criterion clarifies the role of microscopic
correlations in determining the macroscopic connected-
ness. The depth of the minimum in 8, (shown in Figs. I

and 2) is associated with the amplitude of the first peak
in g(r) where the permeable shell encloses a region
whose density is higher than the average density due to
the nearest-neighbor she11. This higher effective density
offsets the tendency of the decreasing overlap region to
increase 8, .

In conclusion, we have calculated the percolation criti-
cal density for permeable spheres and cubes, hard-
core-soft-shell spheres, and hard-core-soft-shell spheres
with an attractive potential. The calculations, which
were based on a new percolation criterion, are

mathematically simple and yield very accurate values for
the critical density.
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