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QCD Sum Rules in Medium and the Okamoto-Nolen-Schiff'er Anomaly
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The QCD sum-rule approach for a nuclear medium is developed. The medium dependence of the
neutron-proton mass diAerence calculated from this approach gives eA'ects in nuclei which have direct
relevance for the resolution of the Okamoto-Nolen-SchiA'er anomaly.

PACS numbers: 21.10.Dr, 12.38.Lg, 14.20.Dh, 21.65.+f

The Okamoto-Nolen-Schiffer (ONS) anomaly' is a
long-standing problem in nuclear physics. The anomaly
is the failure of theory to explain the mass diAerences hE
between mirror nuclei or analog states. Explicitly,

=~&expt ~& th (1)
increases with the mass number A and amounts to —900
keV for A =208. Nuclear structure eAects of many
kinds have been invoked in the past to solve the problem
but without definite success. A recent proposal invokes

mixing eA'ects between p and co meson exchanges leading
to an isospin breaking in nuclear forces that helps to
partly reduce the discrepancy. Other approaches are
also possible. In particular, Henley and Krein have ex-
plored the possibility that the resolution of the ONS
anomaly might be related to the partial restoration of
chiral symmetry in nuclei. By choosing a specific model
for chiral-symmetry breaking, viz. , the Nambu-3ona-
Lasinio (NJL) model, and combining it with a nonrela-
tivistic quark model for the nucleon, they found that the
neutron-proton mass diAerence h, „~=M„—M~ decreases
in the medium as the density of the system increases.
Such a decrease bridges the gap between theory and ex-
periment. However, relativistic corrections to the quark
model tend to reduce the variation of h,„~ with nuclear
density. Other models that are successful in hadronic
spectroscopy, viz. , the MIT bag model and the chiral bag
model in their canonical versions, were also found to give
similar results.

Since in QCD a partial restoration of chiral symmetry
is directly related to a decrease of the quark condensate

(qq) in the medium, it would be better to connect A„~ in

medium with the vacuum parameters in a model-inde-

pendent way. This is possible by generalizing the QCD
sum rules to finite density. The purpose here is to fur-
ther develop this idea and to point out the relevance of
such an approach in resolving the ONS anomaly in a
semiquantitative manner.

For the application of QCD sum rules to d„~ in vacu-

um, the operators relevant for the proton and neutron
with broken isospin symmetry are

e p =e.b, l (u'Cu') ysd'+ t (u'Cy5u') d'],
+, =e,b, l(d'Cd )y5u'+t(d'Cysd )u'],

where C denotes charge conjugation, a, b, and c are color
indices of the u and d quarks, and t is the mixing
strength of the two independent operators having the
appropriate symmetry. Following the usual technique

of the QCD sum rules, ' one obtains a formula for
the neutron-proton mass diAerence in vacuum,

h„—~(6m, y), where 8m =md —m„and y is a measure
of isospin breaking in the condensates, y=(dd)/(uu) —l.
Since both parameters characterizing isospin breaking
are small (6m —4 MeV and y —6m/AQco 10 ), we
can safely expand A„~ to first order in these parame-
ers. ' '

Calculations of h,„~ in vacuum based on the Borel-
transformed version of the QCD sum rule were per-
formed in Ref. 8 following the approach of Ref. 10. In-
clusion of only the continuum contribution does not pro-
vide a consistent treatment, ' since perturbative a,
corrections reduce considerably the absolute value of the
nucleon mass in a meaningful range of the Borel param-
eter. Following the note added in Ref. 10, we adopted
the simplest consistent approach, with t = —1.15 for the
mixing-strength parameter. (We shall return later to
discuss other choices for t.) For the quark and the gluon
condensates, we used the values (qq) =( —250 MeV)
and ((tt, /tr)G ) =(330 MeV), determined by fitting the
J =

2 octet baryons. The isospin-breaking parameter

y was extracted by adopting the SU3 breaking parame-
ter ' (ss)/(uu) —

1 = —0.3 and assuming the simple scal-
ing relation ((dd) —(uu) )/((ss) —(uu) ) = (md —m„)/
(m, —m„). This gives y

= —7.8x10, consistent with
results of the NJL model, and also with other indepen-
dent determinations which yield y in the range —0.006
to —0.009. ' The vacuum value of A„~ =1.3 MeV [after
accounting for the electromagnetic contribution of
= —0.76~0.3 MeV (Ref. 14)] is then obtained with
&n =3.75+ 0.29 MeV.

The above considerations can be generalized to sys-
tems with finite baryon densities which are lower than
the nuclear matter equilibrium density p„=0.16 fm
For our purposes here, three essential points from this
generalization are as follows: (i) The scalar quark con-
densate ~(qq)~ decreases with density (a signature of par-
tial restoration of chiral symmetry), (ii) the isospin-
breaking parameter y varies mildly with density, and
(iii) in medium, eA'ects of additional noncovariant con-
densates in the operator product expansion (OPE), e.g. ,

the vector condensate (q q) =(N, /Nf)p, where p is the
baryon number density, are small for h,,~. EA'ects from
(iii), not explicitly considered in Ref. 8, keep the pole po-
sition of the nucleon propagator nearly constant with
density, in contrast to the case when only the scalar con-
densates are considered.
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This leads to

((a,/tr) G ) =((a,/tc) G ')o ——,
" M„' p+ O(p ),

where M~ is the nucleon mass in the chiral limit. At

p„, the decrease of the gluon condensate is less than
about 10%.

As for (iii), we have carried out an analysis of the
OPE by explicitly including leading-order contributions
from operators involving a„—= (q y„q) = ((q q), 0). Full
details will be published separately. ' The vector con-
densate generates specific contributions to the self-

energy of a nucleon in the medium, i.e., the phenomeno-
logical nucleon propagator takes the form

IIPhen( )
(q —z'))" —z' ' (3)

where A.~ is the coupling of the operator in Eq. (2) to the
nucleon, and Z (Z ) is the vector (scalar) self-energy.
The OPE side of the sum rule may be written as

IIo"(q) =q„)~fI, + II,+a„)"II, , (4)

where we regard a„as a vector background field, and the
polarizations H~ 23 are scalar functions of e, q, and
Q

The pole position of the propagator is determined by
(q„—Z„) =(Z ), which gives co=qo=ZO (ai)+Z (ccrc)

at q =0. As the self-energies are functions of co, one has
to solve a self-consistent equation for the pole position.
From the structure of H( p 3 it is, however, easy to see the
following: (i) Xo increases with increasing p, while Z

decreases with p as (qq) decreases; hence, the pole posi-
tion co stays nearly constant. (ii) The energy difference
h.,z =co„—m~ is chieAy given by isospin breaking in the
scalar part, i.e. ,

=Z' —Z'= )
—2(Sm) f(t)8~'&-

& (5)

where M is the optimum value of the Borel mass and

f(t) =2(7 —2t —5t )/(5+2t+5t ). For A„p, the non-

covariant condensate (q q) appears only in higher-
dimensional operators, whose eAects are suppressed to a
large extent as long as the Borel mass M —1 GeV. This
is due to isospin symmetry in N =Z systems, i.e., (u u)
=(d d). To derive Eq. (5), we have taken only the

Features (i) and {ii) may be explicitly verified by us-

ing the NJL model. In general, (qq) =(qq)o —const
xp, for small cpm and for p & p„. While (qq) decreases
linearly with density, the quantity y

= (dd)/(uu) —
1

= (dd)0/(uu)o —1+O(p, (Sm ),p Sm ) is nearly inde-

pendent of density at low densities. The density depen-
dence of ((a,/tc)G ) may be estimated from the trace
anomaly in QCD:

M„"'=(W)T„—g m, qq)JU) = —-'„(~j(a,/~)G'(~).
q=u, d, .s

dominant terms on the OPE side, i.e. ,

II", 'P ——(q /647c )ln( —
q ),

I12 —fiz ——) ((qq)/4z )q ln( —
q )

+ (6m/327c')q'In( —q')
—(Sm/2' )(a q)ln( —

q ) .

The isospin breaking in H3 is small compared to that in

II, as II,"—II( =2(6m/3q ')(qq&.
Note also that feature (i) above is analogous to the re-

sults of a relativistic approach to the nuclear many-body
system, ' where sizable contributions to X and Z arise
from the exchanges of the co meson and the cr meson, re-
spectively.

The behavior of M vs p depends on the details of the
Borel sum rule. In the extreme case when a„ is neglect-
ed to fit the OPE side with the phenomenological side,
one gets M =const x ~(qq) ~

' for p & p„, implying a de-
crease of M with density. Inclusion of terms with a„
considerably reduces the density dependence of M, since
vector contributions to M increase with density. The
crucial point for h, „~ is that while there is a large cancel-
lation between the two terms in Eq. (5), only the first
term decreases as p increases, as long as the p depen-
dence of M is weaker than ~(qq)~, which is satisfied
even in the extreme case considered above. A detailed
account of the behavior with the Borel mass will be given
in Ref. 15.

The fact that the noncovariant condensates do not
significantly affect the structure of h„p in Eq. (5) pro-
vides us with a simple form for semiquantitative calcula-
tions of the ONS anomaly. Explicitly,

a.p =C) ((qq)/(qq)o) '"—Cp

= [5.24((qq)/(qq)o) '"—3.94] MeV,

which is valid for p & p„. Above, (qq)0 is the scalar
condensate in the vacuum. The numerical values of C~
and Cz were obtained by the Borel method for t = —1.15
as in Ref. 8. In vacuum, Eq. (6) reproduces the correct
value of A„p =1.3 MeU. (The electromagnetic contribu-
tion is included in the coefficient C~.) In medium, the
density dependence of A„p is controlled by (qq) 't, and
decreases in the low-density region as the condensate de-
creases.

To see the relevance of this formula to nuclear physics,
we need to know how &qq) varies in the nuclear medium.
Since lattice QCD results for &qq) in medium are not yet
available, we turn to the trends found in effective field
theories that probe the structure of the vacuum. ' '" In
such theories, the quark condensate decreases linearly
with density for p ~ p„, although the precise rate of de-
crease is somewhat dependent on the parameters chosen.
From dimensional arguments, the behavior of the
dynamical mass of the NJL model in medium can be
identified with that of (qq) 't' of the QCD sum rule with
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the result

(qq) '"/(qq)(i)" = I —Cp/pn =G (p), (7)

where C lies in the range 0.1-0.2.
We turn now to consider (nearly isosymmetric) nuclei,

where in one case there is a neutron, and in the other
there is a proton, outside a common core. As a zero-
order approximation, we take P&(r) =p~(r) —

p~ —1(r)
for the probability distribution of the last nucleon which
is moving in a nuclear medium with p~ —1(r). Compar-
ing the masses of the two mirror or analog nuclei, the
medium-dependent A„p in Eq. (6) will give a contribu-
tion

(Agp )qUc[ej
&

[C]G(p~ i ) —C2]P~ (r) d r (8)

TABLE I. Comparison of 6 from Eq. (9) with typical
"empirical" ONS discrepancies. The two values from Ref. 19
correspond to results based on the density-matrix expansion
and the Skyrme II forces, respectively. The prediction of the
QCD sum rules correspond to Cl =5.24 ~ 1.36 MeV.

Nuclei Eq. (9)
8 (MeV)

Ref. 2 Ref. 3 Ref. 19

I SO I SN
l 7F 17O

39Ca-39K
4]S -4]C

0.53 ~ 0.14
0.29 w 0.07
0.57 ~ 0.15
0.42 ~ 0.11

0.21

0.62

0.16+ 0.04 (0.29) (0.38)
0.30 ~ 0.06 (0.19) (0.30)
0.22+ 0.08 (0.43) (0.54)

0.5 w 0. 10 (0.35) (0.44)

Use of the local-density approximation is implicit in
the calculation of G(pz —1). Equation (8) leads to "an
anomaly of the ONS type" of the size 6 = (A„p )0

(~np )nuclei~ and is given by

S=Ci 1
— G(p~ i)P&(r)d r = CiD. —(9)

Note that 6 depends on the mass number A, and C2 is ir-
relevant in the final formula. To account for the uncer-
tainties in the value of y (= —0.006 to —0.009) and the
electromagnetic contribution = + 0.3 MeV, ' we attach
a ~ 26% error on C~, i.e., Ci =5.24 ~ 1.36 MeV.

In Table I, we show how 6 varies with 2 using Ci
=5.24+ 1.36 MeV and C =0.2. Results for lower
values of C simply scale with its magnitude. The density
distributions occurring in Eq. (9) were calculated using a
Woods-Saxon potential with parameters chosen to fit the
experimental rms values of the core densities and the
single-particle energies of the valence particle. The cal-
culated 6 varies mildly with mass number A. Noticeable
shell eA'ects arising from the diA'erences in the average
density felt by a nucleon outside a closed shell compared
to a nucleon within a close shell are also evident. The
numbers are of the right order of magnitude to partly
resolve the ONS anomaly. For comparison, the "empiri-
cal" ONS discrepancy from diflerent sources ' ' is also
given. The spread in the empirical values reflects the un-
certainties in using diff'erent models of nuclear structure
and nuclear forces in the extraction of the discrepancy.

with

h, „p
= —A ) yMp —8yam, (10)

A|=1+4aMD/3y z2,

Mp
A2 =2+

z2

b
Mp ——yz i

—2a
a

where z 1
= I —exp( —sp/y), and z q

= I —(I +so/y)
xexp( —so/y). Above, Mo =—Mo(y) and y are the nu-

cleon mass in the chiral limit and the Borel mass
squared, respectively. sp is the continuum threshold, as-
sumed here for clarity to be the same for the neutron and
the proton, and a= —(2x) (qq) and b= n((a, /x)G ). —

As before, we use the values (qq) =(—250 MeV) and
((a,/x)G ) =(330 MeV) . Using so=1.9 GeV, we find
the following results: (i) For y =1.7 GeV, M0 =903.5
MeV, 2|=1.84, and 22=1.58, and (ii) for y =2.7
GeV, Mp=939. 2 MeV, A] =1.68, and 42=1.83. The

In view of this, definite conclusions cannot be drawn
from a comparison with the calculated shell eff'ects. It is
also possible that our calculations include only a part of
the shell eff'ects.

Note that our results for 6 are chiefly given by the
quantity C], which is associated with chiral restoration,
with modulations dependent on nuclear structure inputs
[the quantity D in Eq. (9)]. In light of this, it appears
that the ONS anomaly could be a striking signal of
chiral restoration in nuclei. In essence, the partial res-
toration of chiral symmetry makes the proton and neu-
tron isosymmetric at low densities. This explanation of
the ONS anomaly is quite distinct from most other at-
tempts. Traditionally, one invokes charge-symmetry
breaking for the resolution of the anomaly; here it is the
restoration of chiral symmetry that furnishes (at least
partly) the resolution of this long-standing problem.

We now examine the degree to which results from Eq.
(5) are sensitive to the mixing parameter t. Although
Eq. (6) has been obtained with t = —1.15, favored by
the Borel-transform method, similar formulas may be
obtained purely from dimensional reasons for a wide
class of such currents, i.e., other values of t. In fact, the
forms of @(x) favored in the literature all give A„p
=(ai —a26m)f(t), where a2 is a positive dimensionless
constant. The correct sign of h,~ is obtained by a posi-
tive value of al, which has the dimension of mass [and

f(t ) )0]. Of the two quantities, i(qq) i

' and (G ) '

having the dimension of mass, the former chiefly deter-
mines the magnitude of a]. It therefore follows that d „~
decreases in medium as the condensate decreases. All
these forms are therefore of the correct structure to be
relevant for the resolution of the ONS anomaly. To il-
lustrate our point and to see the eAect of the continuum,
we now derive an exact formula for the hadronic contri-
bution of A„p. For the most used choice t = —I (due to
IoA'e ) for which f(r) = I, we find
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gluon contributions to A2 are roughly —,
' of the quark-

condensate contributions. In a picture where both the
quark and gluon condensates are being driven to their
perturbative values, A2 might be expected to vary slowly
with density. This provides a plausibility argument for
the physics content of Eqs. (5) and (6). These numerical
values then lead to a form for h,,~ in medium similar to
Eq. (6), but with somewhat larger coefficients, which is
expected from the approximate formula in Eq. (5). If
we keep 8m=4 MeV as before and choose y (= —5.46
X 10 ) at the lower end of our previous estimate, we
obtain 5„„=[8.6((qq)/(qq)o) 't —7.3] MeV. With these
coefficients, Eq. (9) gives somewhat larger values of 6
than given by Eq. (6). Note that in keeping t fixed at its
vacuum value, one hopes that a perturbative approach
may suSce to predict physical eff'ects at low density. At
high densities, self-consistent procedures including the
role of higher-dimensional operators may have to be
developed to check if in-medium modifications of t are
not large.

We have verified that eAects of charge-symmetry
breaking in the continuum do not afI'ect the general form
of Eq. (6), by performing an analysis using finite-energy
sum rules with diAerent thresholds so for the neutron
and the proton. Furthermore, we note from the results
of Ref. 12 that e, corrections leave the generic form of
Eq. (6) intact, as these corrections do not change the
mass ratios in the same flavor multiplets, although they
decrease the particle masses. As with the Borel-
transform method, we again find the coefficient C~ to be
larger than that in Eq. (6), which seems adequate to
resolve the ONS anomaly (see Table I).

Our general conclusions are as follows. For a wide
class of nucleon currents, the neutron-proton mass dif-
ference can be written as the difference of two fairly
large positive terms, of which only one varies strongly
with (qq)'t'. Any variation of (qq)'t in medium will
therefore lead to an enhanced relative variation of h,„~.
If higher-order eflects do not change this trend, ' this
QCD sum-rule result is of direct relevance for the resolu-
tin of the ONS anomaly. A few directions for further
study are suggested: (i) There is a need to bring the
"empirical ONS discrepancy" under better control by
improved nuclear structure calculations. (ii) For %&Z
systems such as Pb, the role of finite-density eA'ects in

QCD sum rules requires further investigation. Further
eflorts in reassessing the various eff'ects suggested in the
literature may help in the final resolution of the ONS
anomaly.
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