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Geometric Phases and the Bohr-Sommerfeld Quantization of Multicomponent Wave Fields
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Geometric phases play an important role in the asymptotic behavior of multicomponent wave fields,
such as electromagnetic waves in plasmas or quantum-mechanical spinors, particularly in the problem of
Bohr-Sommerfeld quantization. The proper gauge independence of the eigenvalues and asymptotic wave
functions can be understood in terms of gauge-invariant but noncanonical coordinates on the classical
phase space.

PACS numbers: 03.40.Kf, 02.40.+m, 03.65.Sq, 42.20.Cc

Multicomponent wave fields and their asymptotic
(short wavelength) behavior are important in physics.
They include optical waves, electromagnetic waves in

plasmas, elastic waves in solids, and various quantum-
mechanical waves, including nuclear wave functions in

the Born-Oppenheimer approximation. Aspects of the
asymptotic analysis of such waves have been treated by a
number of authors, ' but essential elements, including
the role of geometric phases in the Bohr-Sommerfeld
quantization conditions and in the construction of wave
functions, have received insufficient attention. It seems,
in fact, that a general, geometrically clear, and manifest-
ly gauge-invariant statement of the Bohr-Sommerfeld
quantization conditions for such waves has never been
made. For reference and to establish notation, we begin
by summarizing the asymptotic behavior of scalar wave
equations.

Consider a scalar wave tir(x), with x=(x~, . . . , x„),
satisfying a wave equation Dy=0, where D is a linear
operator. D can be regarded as a function of x (= multi-
plication by x), k = —t'e8/Bx, where e is the WKB or-
dering parameter. In quantum applications, t. is to be
identified with 6, and k with the momentum p. The
classical counterparts, or "symbols, " of the operators x,
k, and D are the functions x, k, and D(x, k), where the
one-to-one correspondence between operators and func-
tions on the classical (x,k) phase space is given by the
Weyl correspondence. For example, in the usual
Schrodinger equation, we have D(x,p) =p /2m+ V(x)

—E. The WKB approximation on y proceeds by setting
ttt(x) =A(x)e' " t' and substituting this into Dtlt=0.
Expanding in e, one finds the Hamiltonian-Jacobi equa-
tion D(x, k) =0 for 5, and the amplitude transport equa-
tion (tl/8x)[A 8D(x, k)/8k] =0 for 2, where in both
equations D is evaluated at k =aS/ax. It is common to
work only to the lowest two orders in e, as we do here.

As for multicomponent wave fields, let the wave func-
A

tion be tlt, (x), and let it satisfy the wave equation D,ptltp
=0. Here a,P are "spinor" indices, indexing the com-
ponents of the wave field, and Dap is a matrix of "orbit-
al" operators, i.e., functions of x, k. This terminology
is useful even for classical waves, such as electromagnet-
ic waves in plasmas. We assume that D & is Hermitian,
(D,tt) =Dtt, . The multicomponent WKB ansatz is
tlt, (x) =A, (x)e' t', where the generally complex am-
plitude A, (x) is now a spinor. The derivation of the
WKB equations for 5 and 2, is more difficult than in the
scalar case, but approaches have been worked out by
several authors. '

The results are the following. Let the "dispersion ten-
sor, " D,ll(x, k), be the Hermitian matrix of Weyl sym-
bols of D,tt, with eigenvalues Rot" (x,k) and orthonormal
eigenvectors z," (x,k), so that D,pzp" =Xq" z," . The
index p is the "polarization" index and is not summed; it
is placed in parentheses to distinguish it from the
spinor-component indices tt, P. The subscript 0 on k will
be explained momentarily. The wave function y, is a
linear combination of independent polarizations. The ac-
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tion 5 of the pth Iiolarization satisfies the Hamilton-
Jacobi equation kp" (x,k) =0, with k =BS/Bx, so that
Xp" (x,k) is the classical ray Hamiltonian for the pth
polarization. The corresponding spinor amplitude is re-
lated to the eigenvector by

A„(x) =B(x)e''b "r.'"'(x,k),
where B is real and satisfies the amplitude transport
equation (8/Bx)[B Rp" (x,k)/Bk] =0, where y is a
phase, and where again k =85/Bx W. e ignore the im-

portant problem of nearly degenerate polarizations or
conical intersections, which lead to mode conversion or
coupling between polarizations.

The phase y is an important element in multicom-
ponent WKB theory, not present in the scalar problem.
Along a ray of the Hamiltonian Xp(x, k) [we drop the
polarization index (p ) for convenience] this phase
satisfies '

j =ir,*{r„Apj+ (i/2)D, ii{z,*,riij .

The first term is (by now) easily recognized as an exam-
ple of Berry's phase, since the Poisson bracket {r„Xpj is
the derivative z, of the eigenvector along the ray. Thus,
the first term contributes i Jr dr to the phase y. The
fact that this contribution to the phase is anholonomic
was recognized by Budden and Smith, who dealt with
several special examples of dispersion tensors, but was
overlooked by several later authors, ' who nevertheless
did treat general dispersion tensors. Equation (1) was
rederived by Yabana and Horiuchi, who did recognize
Berry's phase in the first term. In comparing (1) with
Berry's original analysis, we see that Berry's parameter
space in his adiabatic process can be identified here with
the 2n-dimensional (x,k) phase space, and that the
differential one-form iz dz is the connection for parallel
transport of spinors through phase space. In the WKB
problem, spinors are transported along the rays or orbits
of the ray Hamiltonian.

The problem of the Bohr-Sommerfeld quantization of
multicomponent wave fields, which in its modern form is
well understood for scalar waves, has been considered in

the one-dimensional (dimx=n=l) case by Berk and
Pfirsch ' and by Yabana and Horiuchi. The phase y
contributes to the quantization condition at the same lev-
el as the Maslov index, with the first term of (1)
effectively causing a modification in the computation of
the area of the orbit by the inclusion of Berry's angle
fiux intercepted by the orbit. The second term of (1),
however, is not "geometrical, " i.e., it cannot be repre-
sented in terms of a diAerential form on phase space, it
does depend on the rate at which the path is traversed,
etc. As a result, the quantization condition is somewhat
less elegant than in the scalar theory. The multidimen-
sional case (n ) 1) has been considered by Tabana and
Horiuchi, who imagine solving the Hamilton- Jacobi
equation in ko for S by separation of variables. Unfor-

tunately, these authors are able to take account of the
phase corrections in (1) only for special dispersion ten-
sors. The results are therefore not general, and in any
case, lack the geometrical beauty of torus quantization
known for the scalar case.

We now introduce an alternative approach, based on
the ideas of Friedland and Kaufman, which is general
(any n), which is manifestly gauge invariant, and which
is geometrically as clear as the scalar case. We intro-

A

duce a unitary matrix U of orbital operators, (U,p) U„
=6~„such that U DU=A is diagonal. If such a U can
be found, then all the polarizations are decoupled, and
each polarization, say, p" (x), satisfies the scalar wave

( )equation X "
p " =0 (no sum on tu), where k " is the or-

bital operator on the diagonal of A. Scalar WKB theory
can be applied to these scalar wave equations, and all
known results, such as torus quantization, periodic-orbit
expansions, Van Vleck expressions for Green's functions,
wave-packet methods, etc. , follow immediately. The sca-
lar WKB theory is expressed in terms of the classical ray
Hamiltonian A,

" (x,k), the symbol of 2" . Further-
more, if problems such as caustics or wave chaos make
the WKB analysis difFicult, there is no need to apply it;
one can always work directly with the scalar wave equa-
tion itself. This is the approach commonly taken in the
Born-Oppenheimer approximation, which is a special
case of the techniques described here.

Given D, we solve for the unknown U which will diag-
onalize it by using the Weyl correspondence, and by ex-
panding symbols in power of e. Under the Weyl cor-
respondence, the operator product BC is mapped into
B(x,k)C(x, k)+(ie/2){B,Cj+O(t. ), and the operator
commutator [B,C] is mapped into ie{B,Cj+O(E ).
These are the principal rules we need for the calculation.
For example, in order to satisfy U U =identity, the sym-
bol matrix U,p(x, k) is not exactly a unitary matrix. In-
stead, we write U=Uo+eU[+ . . for the symbol ma-
trix, finding that Uo is unitary, while the correction U1
satisfies

U, = —iU.(G+ —,
' {UJ,Upj), (2)

where again we drop polarization indices. The two ma-

where 6 is a Hermitian matrix, not otherwise deter-
mined by the requirement that U be unitary.

Similarly, we use the Weyl correspondence to tran-
scribe the condition U DU =A into symbols, demanding
that A and hence its symbol matrix A „be diagonal,
A„,=X" S„„and expanding, X " =Xq~" +eX~" + .

At order zero, we find that ko" is the eigenvalue of the
symbol matrix D, exactly as in earlier paragraIihs, and
that Uo diagonalizes D, so that we can set z " =Uo „.
As for the correction terms in the symbol of X ",we find

~1 ~11+~12
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jor terms of this equation obviously correspond to the
terms in (1), except that here they appear as part of the
ray Hamiltonian, not the phase. Thus, by using the total
ray Hamiltonian k =Xo+t.k~, scalar WKB theory can be
applied immediately. For example, for the bound states
of integrable problems, we must seek the invariant tori of
this Hamiltonian; for periodic-orbit expansions, we must
seek the periodic orbits of this Hamiltonian. The wave
function now has the form y, = z Be' ', where 5 and B
are the action and amplitude of the classical system de-
scribed by the total Hamiltonian A, =Xo+ |..X~.

The gauge transformations in Berry's adiabatic
theory are changes in phase conventions for the vectors
z; here we write z e' z for a gauge transformation,
where 0=8(x,k). The term El| of (3) can be written
—i z z, where the time derivative is computed along the
trajectories of Xo. It is gauge dependent in the standard
way in Berry's adiabatic theory. The term X~2, although
it is expressed in terms of z, is gauge invariant. Thus,
the classical ray Hamiltonian k(x, k) is gauge depen-
dent. This fact must be taken into account when con-
structing eigenvalues and wave functions.

Normally, gauge dependence is not an issue in scalar
WKB theory, and ray Hamiltonians are gauge invariant.
An exception is the scalar Schrodinger equation for a
particle in a magnetic field, for which the classical Ham-
iltonian (p —eA/c) /2m is gauge dependent (in the
sense of A A+Vg). (We use boldface for three vec-
tors. ) If we find, say, an invariant torus of this Hamil-
tonian, having some representation in the canonical
(x, p) coordinates, then we can construct a WKB wave
function y(x) from it in the usual way. If the wave
function is to represent a definite physical state, then it
must transform under the gauge transformation accord-
ing to y(x) e" " "'y(x). But this transformation
law cannot be achieved if we hold the torus fixed, in the
sense of its representation in terms of the (x, p) coordi-
nates. This is obvious: A torus which is invariant in one
gauge will not be invariant in another, since the Hamil-
tonian itself changes under the gauge transformation.
On the other hand, introducing the kinetic momentum
p'=p —eA/c, if we hold the representation of the torus
in the (x,p') coordinates fixed, then the WKB wave
function has the proper transformation law under the
gauge transformation. Thus, definite physical states are
represented by tori (or other Lagrangian manifolds)
whose representation in the noncanonical but gauge-
invariant coordinates (x,p') is fixed.

Similarly, in the case of the multicomponent wave
function, a physical state described by y (x) must be in-
variant under r e' r But if an in.variant torus (or
other Lagrangian manifold) of the Hamiltonian X(x,k)
=ko+t. X~, supporting an asymptotic wave function, is
held fixed during the gauge transformation, in the sense
of its representation in terms of the (x,k) coordinates on
phase space, then the wave function y, (x) will not be
gauge invariant. Indeed, since the Hamiltonian itself

changes, the torus will generally not remain invariant.
If, however, we introduce new, primed phase-space coor-
dinates,

g e )fC f
Zg' Zi ler@ 'tr(z~zil (4)

where z =(x,k), z'=(x', k'), j=I, . . . , 2n, then a La-
grangian manifold which is fixed in the primed coordi-
nates does correspond to a gauge-invariant wave func-
tion, and hence to a definite physical state. The primed
coordinates z are generalizations of the primed kinetic
momentum p' of the preceding paragraph, and can be re-
garded as symbols of covariant derivative operators.
These facts can be established in a straightforward
manner.

The primed coordinates are useful for describing
gauge-invariant objects, but they are noncanonical. For
example, if we transform the ray Hamiltonian to the
primed coordinates, we find

X'(x', k') =X(x,k) =to(x', k')+ek|2(x', k') . (s)

The gauge-dependent term X~| has been transformed
away, and the new Hamiltonian X' is now gauge invari-
ant. But since the primed coordinates are noncanonical,
the expressions for the symplectic one- and two-forms
are modified. To within an exact diA'erential, the sym-
plectic one-form is k'dx'+ier dr, showing that Berry's
phase contributes to the computation of action integrals
in the primed coordinates; and the symplectic two-form
is dk'Adx'+iedz Adz. By inverting the component
matrix of the symplectic two-form, ' we can compute the
fundamental Poisson brackets in the primed coordinates.
The modified formula for the Poisson bracket is gauge
invariant since the two-form itself is. Since both the
Hamiltonian and the Poisson bracket are gauge invari-
ant, the classical equations of motion z, '= jz, ', k') are
gauge invariant also.

We see that every multicomponent wave field will give
rise to some gauge-invariant but noncanonical formula
for the Poisson bracket. Such noncanonical Poisson
brackets have proven to be of value in understanding the
classical motion of charged particles in magnetic fields, ''

and are indispensible in sophisticated applications of
classical mechanics. ' They are also of considerable in-
trinsic interest.

Let us now detail how we could compute the Bohr-
Sommerfeld eigenvalues for a multicomponent wave
equation. First we compute the dispersion tensor, its
eigenvalues ko and eigenvectors z, and the correction
term k|2. Next we compute the transformation (4) to
the primed coordinates, and the symplectic form and
fundamental Poisson brackets in those coordinates. As-
suming the ray Hamiltonian k'=Ra+6 ~2 is integrable,
we find its invariant tori. For example, if we can find n

constants of motion in involution (according to the non-
canonical but gauge-invariant Poisson bracket), then
their level sets, if bounded, are tori; or we can create an
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invariant Lagrangian manifold by ray tracing, in which
we use the gauge-invariant equations of motion in the
primed coordinates. The quantized tori are selected
from the others by computing the action integrals around
basis contours; the action differential includes the Berry's
phase term i~ di, which yields a gauge-invariant result
when integrated around the closed basis contours. Thus,
the actions are gauge invariant. Then the value of any
observable quantity (such as the energy or frequency)
which is constant on a quantized torus is an eigenvalue
of the corresponding wave operator.

As for the wave functions, these cannot be constructed
by purely gauge-invariant means, since if y, (x) is gauge
invariant but r, (x,k) is not, then the rest of the wave
function, 8(x)e' " ', cannot be gauge invariant either.
Nevertheless, the gauge-invariant, primed coordinates
are useful for finding an invariant torus or other La-
grangian manifold in the first place, properly quantized
if necessary. The representation of the Lagrangian man-
ifold is then transformed to the unprimed, canonical
coordinates, in which S(x) =fk dx is computed. In gen-
eral, it will be necessary to use more than one (x,k)-
coordinate patch on phase space, since in any particular
gauge there will be singularities (monopole strings) in

some region of phase space or of an individual torus.
The wave functions are patched together by gauge trans-
formations in the overlap regions.

We have explored several examples illustrating these
calculations. The most interesting problem we have ex-
amined is that of spin-orbit coupling of a Pauli spinor.
This is not just a model problem, since asymptotic repre-
sentations of the density of states (i.e., periodic-orbit ex-
pansions' ' ) have proven useful in understanding shell
structure in nuclear physics, ' ' and spin-orbit forces
between nuclei are significant. Indeed, this problem was
the original motivation for the work reported in this
Letter. The spin-orbit calculation is rich, and gives not
only illustrations of all the considerations raised above,
but some others as well, such as the role of conservation
laws in the asymptotic analysis. We will report on this

and other examples in detail in the future.
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