"Low-Temperature" Behavior of a Phase-Slip Center

Xiaoguang Yang and Reinhard Tidecks

I. Physikalisches Institut der Universität Göttingen, Bunsenstrasse 9, D-3400 Göttingen, Federal Republic of Germany

(Received 5 October 1990)

The differential resistance of the voltage-current characteristic generated by an isolated phase-slip center in a superconducting tin whisker has been measured down to 50 mK below its critical temperature. As a function of the temperature the differential resistance shows a resonancelike behavior with a maximum at the temperature where charge-imbalance waves excited by the phase-slip center have their maximum decay length, suggesting that the observed maximum of the differential resistance gives experimental evidence for charge-imbalance waves arising from a phase-slip center.

PACS numbers: 74.40.+k

For temperatures some millikelvins below the critical temperature T_{c0} , the voltage-current (V-I) characteristics at fixed temperature T of superconducting tin whiskers show a steplike structure^{1,2} generated by localized phase-slip centers.³⁻⁵ At the core of a phase-slip center the order parameter performs a relaxation oscillation at the Josephson frequency with a periodic production of nonequilibrium quasiparticle excitations. The diffusion and relaxation of these nonequilibrium quasiparticles govern the so-called "normal-like length" L_{An1} which is proportional to the differential resistance of the first step in a voltage-current characteristic related to a single, i.e., isolated, phase-slip center. A recent review on this topic of nonequilibrium superconductivity is given in Ref. 6.

Most experiments on whiskers were carried out in a small temperature range (down to about 15 mK) below their critical temperature T_{c0} . In this paper we report measurements on tin whiskers for temperatures down to 50 mK below T_{c0} . The tin whiskers used were grown by a squeeze technique.^{1,2} The measurements were performed in a ⁴He bath cryostat.⁶

In Fig. 1 we show a sketch of the first voltage step. It is characterized by the critical current I_c , the height V_1 of the voltage jump at I_c , the differential resistance $(dV/dI)_1$, and the extrapolated zero-voltage intercept I_0 . The normal-like length L_{An1} is related to $(dV/dI)_1$ by

$$L_{\rm An1} = (L/R_n) (dV/dI)_1,$$
(1)

where L is the length of the sample and R_n its residual resistance.

From the V-I characteristics we evaluated the differential resistance $(dV/dI)_1$ and the ratio I_0/I_c . We plot them as a function of temperature in Fig. 2. Both quantities go through a maximum. For sample Sn 1 the maximum occurs at $\Delta T^{max} = T_{c0} - T^{max} = 21$ mK. For

FIG. 1. Sketch of the first voltage step in the V-I characteristics of a Sn whisker.

another sample, Sn 11, similar resonancelike temperature dependences are obtained⁷ with a maximum at $\Delta T^{\max} = 27$ mK. The temperature difference ΔT always refers to the critical temperature T_{c0} of the sample considered. For each sample mentioned, $V_1(I_c)$ consists of two linear portions.⁷ The change from the first linear part to the second one occurs at a current I_c corresponding to the maximum of the differential resistance $(dV/dI)_1$. In Figs. 3 and 4 we show $V_1(I_c)$ and $I_c^{2/3}(\Delta T)$ for sample Sn 1. The temperature of the maximum of $(dV/dI)_1$, $\Delta T = 21$ mK, pertains to a critical current of $I_c = (> 71.2)^{3/2} \mu A = 601 \mu A$, according to Fig. 4. Regarding Fig. 3, we see that there is a crossover of $V_1(I_c)$ from one linear part to the next one at a critical current of about 600 μA .

The basic mechanism of a phase-slip center is described by the model of Skocpol, Beasley, and Tinkham (SBT).³ In this model the nonequilibrium quasiparticles, which are generated during the phase-slip cycle in the core region of the phase-slip center, diffuse into the bordering parts of the superconductor and their charge imbalance relaxes while they are traveling by random

FIG. 2. Differential resistance $(dV/dI)_1$ and ratio I_0/I_c as a function of the temperature T for the first voltage step in the V-I characteristic of a Sn whisker (sample Sn 1).

© 1991 The American Physical Society

FIG. 3. Height V_1 of the first voltage jump in the V-I characteristic of a Sn whisker (sample Sn 1) as a function of the critical current I_c at which the first voltage jump occurs.

walk. The normal-like length L_{An1} is identified with twice the charge-imbalance relaxation length, $\Lambda_{Q^*} = (\frac{1}{3} l v_F \tau_{Q^*})^{1/2}$. Here *l* is the mean free path of the electrons, v_F the Fermi velocity, and τ_{Q^*} the chargeimbalance relaxation time. This model cannot explain our experimental results. Since $(dV/dI)_1 \sim L_{An1} \sim \Lambda_{Q^*}$ $\sim \tau_{Q^*}^{1/2}$, the temperature dependence of the chargeimbalance relaxation time should govern the temperature dependence of the differential resistance. Chi and Clarke⁸ and Clarke⁹ calculated the time τ_{Q^*} for a wide temperature range. However, as a function of the temperature, the time τ_{Q^*} shows a minimum and not a maximum.

We, therefore, consider the Kadin, Smith, and Skocpol (KSS) model⁴ which treats a phase-slip center as a source for charge-imbalance waves propagating along the superconductor just as electrical signals along a telegraph line. We found that the decay length of these waves has a maximum at a temperature which is in a good quantitative agreement with the temperature at which the maximum of $(dV/dI)_1$ is observed in our experiments. This good agreement suggests that we regard the appearance of the maximum of $(dV/dI)_1$ as experimental evidence for charge-imbalance waves excited by the phase-slip center, as will be discussed in the following.

The KSS model allows the calculation of the V-Icharacteristics generated by a phase-slip center. In the high-voltage dc limit $(I \gg I_c)$ the KSS model reproduces the SBT result for the V-I dependence. In the general case, the V-I characteristics have to be calculated numerically by a, usually self-consistent, computing procedure. Moreover, KSS give an approximate solution of their model (see Fig. 13 of Ref. 4). For impressed current, as in our experiments, a V-I characteristic with a voltage jump at I_c and a straight-line behavior above I_c is only predicted for $\tau_{0R} < \tau_E$, where τ_E is the inelastic electron-phonon scattering time and τ_{0R} the supercurrent response time. In this case the transition is hysteretic, i.e., the dissipative phase-slip state is entered at I_c for increasing current while for decreasing current the superconducting state is recovered at a current which is

FIG. 4. Critical current raised to a power of $\frac{2}{3}$, $I_c^{2/3}$, as a function of the temperature T for a Sn whisker (sample Sn 1). $I_c^{2/3}(\Delta T)$ follows a straight line with a zero-current intercept T_{c0} , as predicted by the Ginzburg-Landau theory for a thin superconducting wire (Ref. 6).

smaller than I_c . For $\tau_{0R} \ge \tau_E$ the KSS model predicts a continuous transition at I_c with a slowly changing slope. The experiments, however, already show V-I characteristics with a sharp voltage jump, followed by a straight line, in the temperature range where $\tau_{0R} \ge \tau_E$. Therefore, it is not reasonable to evaluate the form of $(dV/dI)_1$ vs T in the framework of the KSS model and to compare it with our experimental results. Investigations of the hysteretic behavior of a phase-slip center show that in addition to charge-imbalance waves also Joule heating and quasiparticle overpopulation effects have to be considered for a quantitative description of the onset and width of the measured hysteresis.^{6,10} To get realistic V-I characteristics, and thus the form of $(dV/dI)_1$ vs T, one probably has to consider these additional mechanisms in the KSS model. Nevertheless, qualitatively one would expect a maximum of L_{An1} , and thus of $(dV/dI)_1$, if the decay length of the chargeimbalance waves, k_I^{-1} , becomes maximal. The reason is that L_{An1} (see the SBT model) and k_I^{-1} both are a measure of the extent of the nonequilibrium region around a phase-slip center.

The damping of the charge-imbalance waves depends on their frequency, the Josephson frequency $\omega = (2e/\hbar)V$. Here *e* is the elementary charge, $\hbar = h/2\pi$ with *h* Planck's constant, and *V* the voltage across the phaseslip center. In the high-frequency limit ($\omega \gg \tau_{0R}^{-1}, \tau_{E}^{-1}$) the charge-imbalance waves have a decay length given by⁴

$$k_{I}^{-1} = 2\Lambda_{O^{*}}(\tau_{0R}\tau_{E})^{1/2}/(\tau_{0R}+\tau_{E}).$$
⁽²⁾

While τ_E is temperature independent for a fixed sample, the time τ_{0R} depends on temperature. So, we changed the time t_{0R} by a variation of the temperature in our experiments.

The decay length k_I^{-1} has indeed a local maximum. The condition for this maximum depends on the temperature dependence of Λ_{O^*} . Applying the SBT model to the experimental data in the region close to the critical temperature where the differential resistance is temperature independent yields a temperature-independent charge-imbalance relaxation length. In this case the length k_1^{-1} has a local maximum, if the function $(\tau_{0R}\tau_E)^{1/2}/(\tau_{0R}+\tau_E)$ in Eq. (2) is maximal, which happens for $\tau_{0R} = \tau_E$.

Now we determine the temperature where $\tau_{0R} = \tau_E$ is fulfilled. For this purpose we calculate τ_{0R} according to¹⁰

$$\tau_{0R} = (l/2v_F\chi)T_{c0}(T_{c0} - T)^{-1}, \qquad (3)$$

where $\chi = (1 + 0.752\xi_0/l)^{-1}$ with ξ_0 the BCS coherence length. For τ_E we use Tinkham's estimate¹⁰

$$\tau_E = (\tau_{\Theta}/8.4)(\Theta/T_{c0})^3,$$
(4)

where $\tau_{\Theta} = (\rho_{\Theta} l_{\Theta} / \rho_{298 \text{ K}} v_F)$ [(298 K)/ Θ]. Here, Θ is the Debye temperature, $\rho_{298 \text{ K}}$ the temperature-dependent part of the resistivity at room temperature, and $\rho_{\Theta}l_{\Theta} = \rho_n l$ with ρ_n the residual resistivity. We insert the following values:¹⁰ $v_F = 0.684 \times 10^6$ m/s, $\Theta = 200$ K, $\rho_n l = 10^{-3} \ \Omega \,\mu m^2$. For the BCS coherence length we take² $\xi_0 = 2980 \times 10^{-10}$ m. The resistivity $\rho_{298 \text{ K}}$ depends on the orientation of the sample. It is $\rho_{298 \text{ K}}$ [101] =11.10×10⁻² $\Omega \mu m$ for a sample with [101] orientation and $\rho_{298 \text{ K}}[111] = 10.57 \times 10^{-2} \ \Omega \ \mu \text{m}$ for a sample with a [111] orientation.² Values for T_{c0} and l are given in Table I which contains further material parameters of the samples Sn 1 and Sn 11. We get $\tau_E = 3.72 \times 10^{-10}$ s for sample Sn 1 and $\tau_E = 3.91 \times 10^{-10}$ s for sample Sn 11, which are reasonable values for Sn as can be seen from the summary of experimental and theoretical results given in Ref. 6. Our values for τ_E are close to Yen and Lemberger's recent experimental result of τ_E $=(3.57\pm0.36)\times10^{-10}$ s for Sn films.¹¹

For sample Sn 1, the calculation yields $\tau_{0R} = \tau_E$ at $\Delta T = 28.5$ mK, in reasonable agreement with the measured temperature $\Delta T^{\max} = 21$ mK. For sample Sn 11 we obtain $\tau_{0R} = \tau_E$ at $\Delta T = 27.3$ mK which is exactly the position of the maximum of $(dV/dI)_1$. This agreement between calculated and measured values indicates that charge-imbalance waves excited by the phase-slip center could indeed be the reason for the maximum observed in the differential resistance.

Our argument contains some critical points: Eq. (2) is only valid in the high-frequency limit. In the region of the maximum, the frequency ω is, no doubt, larger than τ_E^{-1} and τ_{0R}^{-1} but not so much larger. Moreover, it may be criticized that we assume Λ_{O^*} to be temperature independent in Eq. (2) according to a comparison of the SBT model with our experimental results. The observed temperature-independent differential resistance is only partly understood, as discussed in Sec. 7.2 and Chap. 10 of Ref. 6. While whiskers of In and In-Pb show a divergence of the differential resistance in the direct vicinity of the critical temperature, a temperature-independent $(dV/dI)_1$, and thus L_{An1} , is obtained for whiskers of Sn, Zn, Pb, several alloys, and, for temperatures not too close to T_{c0} , also for whiskers of In and In-Pb.⁶ Applying the SBT model then yields a charge-imbalance relaxation length and time which are independent of temperature. However, no temperature-independent steady-state charge-imbalance relaxation time is known. Also the time-dependent Ginzburg-Landau (TDGL) theory^{5,6} does not predict a temperature-independent normal-like length. In non-steady-state situations, KSS,⁴ and also Lemberger,¹² showed that the dynamic charge-imbalance relaxation time is τ_E rather than τ_{O^*} (see also Secs. 5.4 and 5.7 of Ref. 6). Moreover, Baratoff¹³⁻¹⁵ calculated the behavior of phase-slip centers in a filament beyond the local equilibrium range of the TDGL theory (see also Sec. 5.9 of Ref. 6). For temperatures not too close to T_{c0} , Baratoff found a temperature-independent normal-like length, which is roughly given by $2\Lambda_E$, where $\Lambda_E = (\frac{1}{3} lv_F \tau_E)^{1/2}$. In Chap. 10 of Ref. 6 we concluded, with some caution, that the observation of a temperature-independent normal-like length indicates that the sample has left the temperature range of the local equilibrium approximation. Our assumption that Λ_{O^*} in Eq. (2) is temperature independent is an attempt to consider this fact in the decay length of the charge-imbalance waves. Finally, as done by KSS, we only consider charge-imbalance relaxation due to inelastic electronphonon scattering. Since Sn has an anisotropic energy gap, elastic scattering in principle also contributes to the charge-imbalance relaxation.^{6,9,11,16} This contribution becomes large at low temperatures but can be neglected compared to the inelastic electron-phonon contribution very close to T_{c0} . Since for both samples investigated the maximum of the differential resistance is observed at a temperature not lower than 30 mK below T_{c0} , the effect of elastic scattering on the charge-imbalance relaxation should be small.^{9,11,16}

Investigations performed with microbridges do not yield any local maximum of the differential resistance.¹⁷⁻²⁰ This result does not contradict our interpre-

TABLE I. Material parameters of the samples. L is the length, A the cross-sectional area, l the electron mean free path, $R_{298 \text{ K}}$ the resistance at room temperature, R_n the residual resistance, and T_{c0} the critical temperature of the sample. The experimentally observed maximum of the differential resistance occurs at the temperature difference $\Delta T^{\text{max}} = T_{c0} - T^{\text{max}}$.

Sample	<i>L</i> (µm)	Orientation	$A (\mu m^2)$	<i>l</i> (μm)	R _{298 K} (Ω)	$R_n(\Omega)$	T_{c0} (K)	ΔT^{\max} (mK)
Sn 1 Sn 11	$750 \frac{+63}{-25} \\ 663 \frac{+38}{-25}$	[101] [111]	$1.35 \substack{+0.01\\-0.039}\\-0.039 \substack{+0.036\\-0.024}$	3.697 3.731	61.7 109.9	0.15 0.278	3.6908 3.6892	21 27

tation. We demonstrate this by discussing measurements on tin microbridges: The tin microbridges differ from the tin whiskers in their much shorter electron mean free path *l*. In addition, the charge-imbalance relaxation length Λ_{Q^*} measured for tin microbridges is always temperature dependent. Because of these two distinctions the maximum of the decay length k_I^{-1} of the chargeimbalance waves in a microbridge appears at temperatures very close to the critical temperature T_{c0} . For $\Lambda_{Q^*} \sim \Delta T^{-1/4}$, as usually observed for microbridges, we obtain a local maximum of the decay length k_I^{-1} at $\tau_{0R} = 3\tau_E$. This $\Delta T^{-1/4}$ dependence of Λ_{Q^*} is found, for example, for microbridge TN 2 (with $l=0.18 \ \mu m$ and $\tau_E = 1.4 \times 10^{-10}$ s) measured by Aponte and Tinkham,²⁰ and also for microbridges in Ref. 19. Calculating τ_{0R} with Eq. (3) and setting $\tau_{0R} = 3\tau_E$, we obtain for TN 2 a local maximum of k_I^{-1} at $\Delta T/T_{c0} = 7 \times 10^{-4}$; that means $\Delta T = 2.6$ mK, taking $T_{c0} = 3.72$ K, valid for polycrystalline tin. In such a close region to T_{c0} there does not exist any measurement for that microbridge. Also for the tin microbridges in Ref. 19 with a still shorter electron mean free path there does not exist any measurement where the maximum of the decay length should appear.

Since the first observation of collective excitations in a superconductor by Carlson and Goldman,²¹ there have been many studies of this phenomenon,⁶ but only a few experiments give evidence for collective excitations caused by a phase-slip center.²²⁻²⁴ In the present work we found a maximum of the differential resistance of the V-I characteristic generated by a phase-slip center. This maximum appears at a temperature where the decay length of charge-imbalance waves in the specimen is maximal. This result suggests further evidence for collective excitations arising from a phase-slip process.

The authors are pleased to thank the Akademie der Wissenschaften in Göttingen for financial aid. The work was supported by the Deutsche Forschungsgemeinschaft in Bonn.

¹J. D. Meyer, Appl. Phys. 2, 303 (1973).

²R. Tidecks and J. D. Meyer, Z. Phys. B 32, 363 (1979).

 3 W. J. Skocpol, M. R. Beasley, and M. Tinkham, J. Low Temp. Phys. 16, 145 (1974).

⁴A. M. Kadin, L. N. Smith, and W. J. Skocpol, J. Low Temp. Phys. **38**, 497 (1980).

⁵L. Kramer and R. Rangel, J. Low Temp. Phys. 57, 391 (1984).

⁶R. Tidecks, *Current-Induced Nonequilibrium Phenomena in Quasi-One-Dimensional Superconductors*, Springer Tracts in Modern Physics Vol. 121 (Springer-Verlag, Berlin-Heidelberg, 1990).

⁷X. Yang, thesis, University Göttingen, Federal Republic of Germany, 1990 (unpublished).

⁸C. C. Chi and J. Clarke, Phys. Rev. B 21, 333 (1980).

⁹J. Clarke, in *Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries*, edited by K. E. Gray (Plenum, New York, 1981), Chap. 13.

¹⁰B. Damaschke, X. Yang, and R. Tidecks, J. Low Temp. Phys. **70**, 131 (1988).

¹¹Y. Yen and T. R. Lemberger, Phys. Rev. B 37, 3324 (1988).

¹²T. R. Lemberger, Phys. Rev. B 24, 4105 (1981).

¹³A. Baratoff, Phys. Rev. Lett. **48**, 434 (1982).

¹⁴A. Baratoff, Physica (Amsterdam) **109 & 110B**, 2058 (1982).

 15 O. Liengme, A. Baratoff, and P. Martinoli, J. Low Temp. Phys. **65**, 113 (1986).

¹⁶C. C. Chi and J. Clarke, Phys. Rev. B 19, 4495 (1979).

¹⁷H. Weissbrod, R. P. Huebener, and W. Clauss, J. Low Temp. Phys. **65**, 113 (1986); **73**, 171(E) (1988).

¹⁸V. M. Dmitriev, E. V. Khristenko, G. E. Churilov, and V. N. Svetlov, J. Phys. (Paris), Colloq. **39**, C6-507 (1978).

¹⁹A. M. Kadin, W. J. Skocpol, and M. Tinkham, J. Low Temp. Phys. **33**, 481 (1978).

²⁰J. M. Aponte and M. Tinkham, J. Low Temp. Phys. **51**, 189 (1983).

²¹R. V. Carlson and A. M. Goldman, J. Low Temp. Phys. **25**, 67 (1976).

²²R. Tidecks, J. Low Temp. Phys. **58**, 439 (1985); **60**, 459(E) (1985).

²³A. M. Kadin, C. Varmazis, and L. E. Lukens, Physica (Amsterdam) **107B**, 159 (1981).

²⁴W. J. Skocpol and L. D. Jackel, Physica (Amsterdam) **108B**, 1021 (1981).