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Heavy-Fermion Behavior in a Negative-U Anderson Model
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We show that the low-temperature fixed-point behavior of the negative-U Anderson model involves a
"charge Kondo eA'ect, " where the local pair behaves as a Heisenberg rather than an XY degree of free-
dom. Interactions of the local pair with the conduction sea generate a highly polarizable Fermi liquid
with enhanced linear specific heat and charge and pair susceptibilities.
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The dramatic role played by slow spin fluctuations in

the development of strongly correlated electron behavior
is well known, in the context of both d- and f-electron
systems. ' These effects are often understood within the
framework of the Brinkman-Rice scenario for the ap-
proach to a Mott transition, whereby the development of
slow spin fluctuations gives rise to an almost incompres-
sible Fermi liquid with a large enhancement of the linear
specific heat and spin susceptibility, loosely termed, a
"heavy-fermion" ground state. The essence of this phe-
nomenon is the development of a highly degenerate man-
ifold of local moment states: The splitting of this degen-
eracy at low temperatures is accompanied by the forma-
tion of a highly correlated electron fluid.

Can analogous behavior occur in response to slow

charge fluctuations? Early interest in such a possibility
occurred in the context of the mixed-valence phenom-
enon. In this case, however, the bulk of evidence now

suggests that the root of strong renormalization eff'ects is
the low-frequency spin fluctuations that are generated by
virtual charge fluctuations. ' The well-known case of po-
laronic conductors also fails to provide us with a charge
analog of the Brinkman-Rice phenomenon, there being
no intrinsic degree of freedom to play the role of a local
moment. We have reexamined this question, considering
the effects of slow pair fluctuations between singlet states
diff'ering by two units of charge. Our most important
conclusion is that in a two-band environment, local pair
formation bears close analogy to local moment forma-
tion. Internal charge degrees of freedom of a pair
severely modify the nature of the fluid that results, lead-
ing to a charge analog of heavy-fermion conductors.

The dynamics and formation of pairs in a two-band
environment may be described by a negative-U Anderson
model,

H=g(ek —p)cq cq +QV[ci, d~
e' '+H. c.]

ka JO

+ (Ed —p —U/2)nd —(U/2) (nd —1), (1)

where d~ creates an electron localized at site j, U&0,

and Ed is the energy of an electron in the localized "d
state. " The attractive U could have a variety of micro-
scopic origins, such as a charge disproportionation in a
valence-skipping compound, exchange of a low-energy
bosonic excitation, or a more complex many-body phe-
nomenon. We are interested in the possibility of generic
features that arise from strong localized pairing interac-
tion that may be separated from the detailed origins of
the interaction and the precise identification of the local-
ized "d" state.

Consider the atomic limit of this model with one d site
per unit cell. As the chemical potential p passes through
the special value po =Ed —U/2 the total electronic
charge per unit cell N(p) will jump by 2,

N(po ) N(po ) =2—,

due to occupation of the d state. If the filling of the
electron sea N lies in the range N(po ) & N &N(po+),
the chemical potential is pinned to the value p =po (Fig.
1), where the d and d states are degenerate Hybridi-.
zation generates tunneling within this degenerate mani-
fold, similar to the spin fluctuations that occur between
up and down configurations of a local moment in a re-
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FIG. 1. The jump in the occupancy of a pair state that
occurs at the symmetric point of the negative-U Anderson
model. The charge Kondo eff'ect smears this jump out over an

energy scale T+.
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pulsive-U Anderson model. We are thus led to consider
the possibility of a "charge Kondo effect, " where by
analogy with the positive-U case, the charge of the local
d states will become dynamically screened by low-fre-
quency pair fluctuations, generating a highly polarizable
electron fluid.

To simplify matters, first consider an isolated sym-
metric negative-U Anderson impurity, where interactions
between different localized pairs are neglected. For a
perfectly particle-hole symmetric band, this model is iso-
morphic to its positive-U counterpart, ' ' and the map-
ping

d~ ~ —d~, cl, ~
~ c —g~ (2)

Here Sd and V'd = —, d zd are the impurity spin and iso-
spin, respectively; d—:(d t, —d

~
) is a Nambu spinor for

the d electron and z= (z', z, z ) denotes Pauli matrices
in particle-hole space. The third component of the iso-
spin is the atomic charge 'Td = —,

'
(nd —1), while trans-

verse components describe the pair amplitude and phase
+Td dtdf.
Properties of the negative-U Anderson model change

markedly below temperatures of order U, due to a cross-
over associated with the suppression of charge 1e
valence Iluctuations (Fig. 2). In the repulsive-U model
this crossover is the origin of local moment formation;
for the negative-U case, a special kind of "local pair for-

transforms the symmetric repulsive-U Anderson model
into the corresponding attractive-U model, interchanging
pair and spin degrees of freedom:

Sd ~+d .

g, =g = 1
—2Jp 1+2(Jp)ln1 T

4T U
+ 0 ~ ~ (4)

due to the partial "quenching" of the impurity isospin.
Pair fluctuations will drive a logarithmic growth of resis-
tivity as the temperature is lowered. At the pair fluctua-
tion temperature

mation" occurs. Unlike the small polaron problem, here
the model is symmetric, so the chemical potential for
pair creation is zero: The degenerate d and d states
are like "up" and "down" states of a local moment. At
low energies, the local pair therefore behaves as a Hei-
senberg "isospin, " interacting with the conduction sea
via pair exchange: d =d +2e . This low-energy re-
gime is described by a Kondo isospin model, derived by
a Schrieffer-Wolff ' transformation, as in the positive-U
model, '4

H =QEkck~cg~+2J'T, 7'd,

where J=2V /U and '7, = —,
' 4'(0) z+(0) is the conduc-

tion-electron isospin at the impurity site, written in terms
of the Nambu spinor + (0) =g t( cl t, c- 1~). The most
unexpected feature of this Hamiltonian is the "antiferro-
magnetic" interaction between conduction electrons and
the localized pair. This interaction grows at low temper-
atures, inducing increasingly strong pair fluctuations, un-
til ultimately the conduction-electron pairs bind to the
local pair, forming a neutral object: an isospin singlet.

In a symmetric conduction band, the total isospin
7' =V'd+V', is conserved, so charge and pair susceptibil-
ities are equal. At high temperatures this system will ex-
hibit Curie law charge and pair susceptibilities with
small logarithmic corrections

T~ =U(trJp) 't exp[ —1/2Jp], (s)
Energy
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FIG. 2. The How from high-energy valence fluctuations to a
low-energy Fermi-liquid state in the negative-U Anderson
model.

g, = W/4trT~, (7)

where W/4' =0.1023. . . is the universal Wilson num-
ber. ' The "Wilson ratio" of pair susceptibility to linear
specific-heat capacity, in dimensionless units, is

~ =~,/~=2,

showing complete suppression of local spin fluctuations

the isospin of the impurity becomes coherently admixed
with the isospin of the conduction band, binding a pair
degree of freedom from the conduction sea to form an
isospin singlet.

Below T+ there will be a second crossover into a
strongly correlated Fermi liquid with an Abrikosov-Suhl
scattering resonance at the Fermi energy which elastical-
ly scatters holes and particles with unitary phase shift

8, =St, =tr/2.

The width of the resonance is of order T+, and charge
and pair susceptibilities are

2815



VOLUME 66, NUMBER 21 PHYSICAL REVIEW LETTERS 27 MA+ 1991

Since the strong-coupling fixed point is neutral, depar-
tures from perfect isospin symmetry are generally ir-
relevant in the one-impurity model, and can actually
enhance this phenomenon. A conduction-band particle-
hole symmetry can be recast as a magnetic-field term
coupled to the conduction-band isospin. Providing this is
small on a scale of the bandwidth, this produces no
significant eff'ects. More important still, however, a
Coulomb screening will actually tend to enhance the
charge Kondo effect. A Coulomb screening term Hg
=Vndn, between the electrons and local pair enhances
the Ising component of the spin exchange J, J+4V.
As in the spin Kondo eff'ect, this term drives the initial
Hamiltonian further along the scaling trajectory towards
strong coupling. So actually, the local pair behaves in-

creasingly like a Heisenberg isospin at low temperatures
rather than a charged boson with no internal degree of
freedom, and the charge Kondo effect in the symmetric
model is robust against conduction-band asymmetries.

Can this phenomenon survive in the lattice once the
interactions between local pairs are included? To study
this possibility, we write the low-energy degrees of free-
dom of a negative-U Anderson lattice as an isospin Kon-
do lattice ' model,

H =g (ek —p)ckz3ck+ Jg'Td(J') c/ zc/.
ktT J

Here c/ =(c/~t, cjoy) and ck =( kic, c ki) are conduction-
electron spinors in the position and momentum basis, re-
spectively. Unlike the impurity model, isospin conserva-
tion cannot be taken for granted, for even in a band with
a symmetric density of states, degenerate electron and
hole states never lie in the same region of momentum
space.

Fully fledged "isospin conservation" actually develops
in the vicinity of a nesting instability of a half-filled
band. Consider the special case of a bipartite lattice
with strong nearest-neighbor hybridization. To a good
approximation, near half filling, the degenerate electron
and hole states are separated by an amount Q in momen-
tum space over most of the Brillouin zone, so e(k)
= —e(k —Q), where Q is the zone center. Exact equal-
ity occurs in the case of perfect nesting, and, in this spe-
cial case, the staggered component of the transverse
isospin 'T (Q) is conserved. By applying the gauge

I 0, //2 i8, /2
transformation cJ e ' cJ, dJ e ' dJ, where OJ

=Q. R/, the x and y isospin axes are rotated through
180 about the z axis, so the staggered component of the
transverse isospin transforms into the uniform transverse
isospin T' (q) ='T (q+ Q). After this transformation,
the Hamiltonian becomes

H =gck(ek pkz3)ck+2JQ'T—d(j). T,'(j), (i0)
ktT J

where

&k = [ek —g/2 &k+Q/2]/2, pk =p [ek —g/2+ ek+q/2]/2

(ii)

are the symmetric and asymmetric components of the
band structure. This is now precisely a Kondo lattice
model, where isospin replaces spin. The term pk plays
the role of a momentum-dependent magnetic field that
breaks an otherwise perfect isospin conservation. For-
tunately, we do not require that this term be identically
zero, which would imply perfect nesting and probably
the formation of an insulator. The condition for a large
Kondo energy T+ is significantly weaker, and demands
merely that the average magnitude of pk be small com-
pared with the bandwidth: a condition that is satisfied
quite far away from perfect nesting. In the discussion
that follows we accordingly take the delicate point of
view that pk can be treated as a finite, but irrelevant per-
turbation.

In this lattice, as in magnetic Kondo systems, superex-
change processes occur, which here induce exchange pair
coupling (SPC) between local pairs,

H'= —, gK(R; —R/)T 'T'.

This is the analog of the RKKY interaction, and con-
tains a long-range oscillatory component of the form
(J p)cosQ. R/R . When the SPC is large compared
with T~ an ordered charge-density wave [('T' (Q) )
=

2 pq] or superconducting ground state [('T'+ (Q))
=('T+(0)) =W] will result. In this case the low-energy
isospin dynamics are anisotropic due to Coulomb in-
teractions and band eAects, falling into the XV class in
the superconductor, and the Ising class for charge-
density wave (CDW).

When the frequency of pair fluctuations T+ becomes
large, the properties of the conductor become severely
modified. As the Kondo fixed point is approached, the
renormalized isospin interactions will tend to become
more isotropic: The system of local pairs will behave
more like a fluid with a Heisenberg charge degree of
freedom, in which the charge and pairing amplitudes
behave as three components of one fi'uctuating vector

Once T+ actually exceeds the SPC, this system will
form the charge analog of a Kondo lattice ground state,
with a highly polarizable narrow band of quasiparticles
of width —T+. The mass of the heavy quasiparticles
will scale approximately with the charge susceptibility,

m*/m-g, p. (i3)
Unlike a heavy-fermion compound, charge currents in
the isospin Kondo lattice contain a new, pair hopping
component. By gauge invariance, the uniform pair cur-
rent is then

J = —BH'[A]/BA

= —2e+VK(q) [z. (T X7' — )1, (i4)
q

where K(q) is the Fourier transform of K(R). High-
temperature pair motion in the "paramagnetic" regime
will be diffusive, with conductivity given by the Einstein
relation o~ —2)g„where 23 is the pair diffusion constant.
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Pair conductivity will therefore scale like the Curie pair
susceptibility cr~ —I/T. Kondo scattering of the conduc-
tion current will generate an additional logarithmic com-
ponent to the conductivity' p —ln(U/T), so we expect
the high-temperature resistance to contain a linear and a
logarithmic term p(T) —T —in T.

From our knowledge of the low-temperature phases of
heavy-fermion systems we may use the duality between
spin and isospin to discuss possible low-temperature
phases of our model. Just as s-wave superconductivity is
suppressed in favor of exchange-driven anisotropic d-
wave superconductivity in a Kondo lattice, conventional
magnetism is suppressed in an isospin Kondo lattice, in
favor of off-diagonal spin nematic order with order pa-
rameter (dqcrdk) —Akn, where Ak has d symmetry. '

Similarly, the analog of magnetic heavy-fermion phases
will be superconducting or CDW states that coexist with
the highly polarizable heavy-fermion phases. More de-
tailed considerations of these phenomena can in fact be
carried out within a functional integral. The low-energy
Lagrangian for this model is almost identical with the
spin Kondo lattice, ' the only difference being that the
constraint acts on the d spin, setting Sd =0 at each site.
For the lattice the mean-field ground state is a Fermi
liquid,

I+) =PII (~kck. +Pkdk-)10),

where the hybridization coe%cients are those appropriate
to a renormalized resonant d band; P projects the d-spin
singlet component at each site.

Lastly, we mention some potential realizations of this
phenomenon. We have specifically discussed the case of
degenerate, highly localized charge-fluctuation states. In
the strictest interpretation, such a state of affairs can
probably only occur close to a chemical instability, as in
the group-III or group-V elements, which have a propen-
sity towards valence skipping. For instance, Kondo
scattering may play a central role in the saturated resis-
tance of the BaBi03-based superconductors. Equally in-
teresting, however, is the relationship of our example to a
more general class of problem where high-energy pro-
cesses force a flow towards a particle-hole symmetric
fixed point. It may be possible to regard the 415 super-
conductors' in this vein, following the observation of Yu
and Anderson, that the high-temperature saturated resis-
tance is reminiscent of Kondo scattering.

To conclude, we have analyzed a scenario for the for-
mation of a highly polarizable heavy-fermion state: the
antithesis of the Brinkman-Rice liquid. In this fluid,
strong correlations are generated amidst a fluid of slow
charge and pair fluctuations, giving rise to an enhanced

linear specific heat and charge and pair susceptibilities.
In contrast to the Brinkman-Rice fluid, spin fluctuations
are almost entirely suppressed.
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