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The self-organized critical state exhibited by a sandpile model is shown to correspond to motion on an
attractor characterized by an invariant distribution of the conserved variable. The largest Lyapunov ex-
ponent is equal to zero. Yet over time scales of the order of the linear size of the system, the model
displays intermittent chaos. The divergence of local histories is found to exhibit intermittency in both

time and space.

PACS numbers: 64.70.—p, 05.45.+b, 05.60.+w, 47.20.—k

The ubiquity in nature of phenomena exhibiting self-
similarity over a wide range of spatial and temporal
scales suggests that mechanisms giving rise to such be-
havior must be robust with respect to variations of sys-
tem parameters or initial conditions, as well as being in-
dependent of the detailed physics in question. This has
led Bak, Tang, and Wiesenfeld'? to propose a very gen-
eral scenario for “self-organized criticality” where an ex-
tended dissipative system spontaneously evolves into a
“critical” state possessing spatial and temporal scale in-
variance.

The sandpile as an explicit, discrete realization of a
model with nonlinear diffusive dynamics in the presence
of noise has attracted a lot of attention.'”'® In a finite
system the “self-organized critical state” is reached and
maintained under the addition of a small but finite densi-
ty of grains of sand. This dynamical state corresponds to
motion on an attractor in phase space, under this random
driving force. It is the purpose of this Letter to show
that the sandpile exhibits spatial and temporal intermit-
tency by elucidating the multifractal scaling properties
of this attractor.

Throughout this Letter we shall assume an *“‘experi-
mental” stance. Although the system is discrete in time
and space and the variables assume discrete values, we
find that there exist well-defined scaling laws in the limit
of long times or spatial separations, or “‘small” distances
in phase space, which is indeed the basis of determining
dimensionalities and expansion coefficients in much of
the experimental work, either in simulations or in the
laboratory.

We begin by recalling the definition of the mode
In two dimensions, to which we will confine our atten-

1 1,8,9

c) =Mlgp #[number of pairs ({z};,{z};) with d({z};,1z},) <11,

where {z}; is the stable configuration reached after the ith grain is added, i =1,...,M, and d(., .) is the distance

tion, the ““sandpile” is characterized by integer z; at all
sites k. The external driving force corresponds to adding
a particle at a random site k such that z;(n+1)
=z, (n)+1, where n is the discrete time variable. If at
any time z; = 4, then

zkn+1)=2z,(n) —4,
(n
zk+5(n+1)=zk+5(n)+l .

where & signifies the unit vector to nearest-neighbor sites.
Clearly z is conserved. For simplicity we have taken
“closed” boundary conditions' on two contiguous edges
and “open” boundary conditions on the other two. The
frequency of addition of grains is low enough to allow
the system to come to rest before the next grain is added.
In what follows, n will signify time measured in number
of particles added.?

The stationarity condition is given by the require-
ment that the rate of flow into a particular microscopic
state—a particular z value—should equal the rate of
flow out of that state.'® This implies that the steady
state is characterized by an invariant distribution'! p(z),
which is indeed what we have found. It should be
remarked that the deterministic dynamics of relaxation
from supercritical configurations is not sufficient to reach
this invariant distribution, but that the annealing effect
of the presence of noise is necessary.'? The size of the
relative fluctuations decreases with system size.

A more detailed description of the attractor is afforded
by the hierarchy of exponents that have been intro-
duced'>'* to characterize the multifractal distribution of
phase points on the attractor. We have computed the
correlation integral '3

(2)

14 in

phase space between the two configurations i and j. For M ~L 2 and 1 <! < O(L), where L is the linear size of the sys-
tem, we find that C(J)~1" with v=0.37 =0.01 < L2, which is the signature of a nontrivial attractor. If Dz is the
number of effective positive Lyapunov exponents (LE’s), the rigorous inequality 13 D, g < v, implies Dy =0 in this case.
Thus all LE’s are less than or equal to zero.'> The eigendirections of the zero LE’s correspond to conserved quantities,
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FIG. 1. Hamming distance in arbitrary units between two
nearby configurations, as a function of n. In Eq. (3) we set
z{(0) =2, (0), except at four randomly chosen sites where
24(0) =z, (0) +1.

the existence of which is claimed? to underlie spatiotem-
poral scale invariance.

To picture the motion in phase space with the largest
LE A, =0, it is instructive to consider the behavior of the
Hamming distance H (n),

Hm)= Y [zx(n)—2z{(M)]?, 3)
all sites k
between two slightly different configurations as a func-
tion of time.'® Figure 1 suggests a cyclic pattern with a
characteristic time scale of the order of L over which the
trajectories are intermittently diverging,'’ after which
there is an abrupt collapse to nearby configurations.

Clearly, the Lyapunov exponents, which are global
quantities, do not suffice to fully describe this situation.
Although over long times /N>>L the trajectories do not
diverge, it is of interest to investigate over time scales
~O0O(L), i.e., over one “cycle,” the inhomogeneous way
in which segments of the trajectory “attract” or “repel”
each other. We define (Vx L?)-dimensional vectors, or
“histories” '® vi

ia
XM=z, {divr, .. A2dian-1) @

starting at the phase point {z};. The probability of en-
countering another history in a neighborhood of size /
around X§" in history space is

M
PNV XEM) =ﬁ Y 0U-aXM-XM), ()
j=1
where M ~NL? is the number of histories, O is the step
function, and
(N) W) 1 %
AXY =XV =—— 2k (D) =z G + ) 6)
o / Ninglkgll , - 2
is the distance between the pair of histories, normalized
so that it takes continuous values between zero and z..
After Paladin, Peliti, and Vulpiani'® one may define lo-
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FIG. 2. Nonlinear g dependence of K(gq) over time scales of
the order of one cycle.

cal expansion parameters A; via P (I)~e ~™", which
provide a heuristic measure of the rate at which a trajec-
tory is ‘“expanding” in a particular region of history
space. Over time scales 1 <N <L, /[— 0, the partition
function scales like

Ta(g)=X PN ()1~ N~ DK@ @))
1

where K(q) is a nonlinear function of g (see Fig. 2).
This points to a multifractal distribution for the A;, and
signals intermittency'”'® in history space. The K(g)
measure the relative weight of ‘“laminar” and “turbu-
lent” regions in phase space within a given cycle. The
sum in Eq. (7) is dominated by those terms with the
smallest (largest) A; for large (small) g, respectively.

In the limit V— oo, where one effectively averages
over many cycles, we cross over to a qualitatively differ-
ent behavior, with K(g) =0 for all g. In this limit the
K (q), heuristically defined in Eq. (7), go over to the
Renyi entropies,'®!" and the Pesin relation,'® K(1)
=Y (all non-negative LE’s), is fulfilled, with K (1) =0.

FIG. 3. Evolution in time of active sites (shown in black) on
a one-dimensional cut through the sandpile. The vertical axis
corresponds to the position along the cut and the horizontal
axis to time over several avalanches (L =30).
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FIG. 4. Intermittency reflected as multifractality in the dis-
tribution of expansion parameters of local histories, for L =30,
r=1. [See Eq. (9) in text.]

We would now like to examine how the turbulent and
laminar regions are distributed in the 2-space+1-time
dimensions. For ease of visualization, we take a one-
dimensional cut through the sandpile and plot, as a func-
tion of n, all points along this cut for which z;(n—1)
— 2z, (n) =0 (see Fig. 3).

What we get is a series of snapshots of the active re-
gions falling on this particular intersection, in the course
of several avalanches. Since some z; may flip back to
their previous value during an avalanche, the active clus-
ters are found to be noncompact, in contrast to the usual
approach.">° For systems with linear size L =30 and
with frequency of addition of grains low enough to allow
the system to equilibrate before the next grain is added,
we compute, for the fractal dimension of the set of active
sites on a typical cut, D, =0.6 £0.05. Assuming suffi-
cient invariance under translation, the usual argument of
additivity of codimensions?° leads to Dy =1.6%0.05 for
the fractal dimension of the total set of active regions at
any moment in time, and Dy+1=2.6 > 2 for the dimen-
sion of the same set translated in time in a statistically
self-similar fashion and embedded in 2+ 1 dimensions.

Finally, we would like to introduce a new quantity,
which we shall call a “local history,” as a measure of
how differences in local configurations scale with time
and spatial separation. We define

hi(r,n) = Z=‘[zk(m)—zk+,(m)]2 (8)
and
R(g;n,r)= ”Z khk(r,n)". )
all sites

In analogy with the multifractal scaling in history space,
we now have, for the local histories, for fixed r and
1<n<L,R(g;n,1)~e"" @ and for fixed n~O(L) and
1<r<L, R(g;r)~r*?@. We have plotted 7(g) and
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FIG. 5. Nonlinear g dependence of the gth moments of the
local histories as a function of spatial separation.

¢(g) in Figs. 4 and 5, where one clearly observes the
nonlinear dependence on q. For the case of {(g), the
close similarity with multifractal scaling in turbulent
media'42"22 is obvious. We have shown that concepts
like correlation integrals and intermittency, both in con-
figuration space and history space, can be extended to
cellular automata in such a way as to complement
their investigation via the “damage spreading” type of
approaches. '
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