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Spectral Bandwidth in Free-Electron-Laser Oscillators
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The evolution of the spectral bandwidth in free-electron-laser (FEL) oscillators is studied and found
to be diAerent for different saturation characteristics: For weakly saturated FELs in storage rings, the
limiting bandwidth is given by that derived in the supermode theory; for linac-based FELs, where the
gain reduction due to the high-intensity eAect is significant, it is determined by the Fourier transform of
the electron pulse length; for the case of a dc beam, it is given by a Schawlow-Townes formula, but the
approach to the limit is very slow.

PACS numbers: 42.55.Tb, 42. 10.Mg, 42.60.0d

There has been some confusion in the past about the
achievable bandwidth in free-electron-laser (FEL) oscil-
lators. ' For FELs driven by electron-beam micropulses,
the bandwidth is usually assumed to be given by the so-
called Fourier-transform limit, i.e., the ratio of the radia-
tion wavelength and the electron-beam bunch length.
However, the analysis in terms of the supermode theory
leads to a diA'erent formula, given by a geometric aver-
age of the gain bandwidth and the transform-limited
bandwidth. Extension of the Schawlow-Townes limit
to FELs has also been discussed. Experimentally, the
bandwidth of the storage-ring-based FELs in the visible
region is consistent with the prediction of the supermode
theory. For the linac-based infrared FELs constructed
so far, the bandwidth appears to be given by the trans-
form limit, although the situation is somewhat ambigu-
ous because the bandwidths calculated from two formu-
las are not very diA'erent. It is thus important to resolve
the bandwidth issue in FELs. In this Letter, we study
the evolution of the spectral and temporal profiles in

FELs in terms of a simple but physically reasonable
model, and find that the limiting bandwidth is given ei-
ther by the Fourier transform or by the supermode
theory depending on the particular saturation charac-
teristics.

We show that the bandwidth of the optical pulse nar-
rows as 1/Jn as the number of passes n of the electron
beam through the optical cavity increases. The temporal
width also narrows in a similar fashion in the beginning
of the intensity buildup. This, together with the fact that
the product of the temporal and the spectral widths must
be greater than a minimum value, leads to the limiting
bandwidth predicted by the supermode theory. The su-
permode theory is valid for a weakly saturated system
such as storage-ring-based FELs, where the gain can be
regarded as a constant.

For linac-based FELs, however, the optical power
evolves to a level where the reduction of gain due to high
intensity, i.e., the gain saturation, becomes important.
Observing that the gain saturation is homogeneous in

frequency but inhomogeneous in time, we derive that the
limiting bandwidth is then given by the Fourier trans-

form of the electron pulse length. In this discussion, we
find it necessary to distinguish between the intensity sat-
uration and the "spectrum saturation"; the time to reach
the limiting spectrum is typically longer than the time to
reach the intensity saturation.

For the case of a dc electron beam, the narrowing of
the bandwidth continues until it reaches a small value
determined by the spontaneous radiation, the Schawlow-
Townes limit. However, as the bandwidth narrowing is

slow, 1/Jn, it takes a long time to reach this value, typi-
cally a day or longer.

To begin the analysis, let dP(co, r;n)/dco be the
dependent spectral density of the optical power at the be-
ginning of the nth passage, and dS(co, r)/dco a similar
quantity for the spontaneous radation emitted in one
pass. Here, co is the frequency and cr (c the speed of
light) is the distance from the pulse center. Since co and
T; are conjugate variables under Fourier transformation,
the following inequality must be satisfied:

where o. and o, are the rms values of the spectral and
the temporal widths. The quantities dP/dcu and dS/dco
should, strictly speaking, be understood as the Wigner
distribution. However, when o. o,)) 1, the distributions
dP/dcu and dS/dco can be interpreted as local spectral
densities at z. With this interpretation, a simple model
for the evolution of the optical power may be written as
follows:

d dP(co, r;n) dP(cu, r;n) + dS

(2)
Here g is the gain parameter and a is the total loss per
round trip. Equation (2) is the statement that the in-
crease of the optical power during the nth passage of the
electron beam consists of two terms, that due to the
amplification of the power already present and that due
to the spontaneous radiation. In the following, we solve
Eq. (2) to find the evolution of the quantity dP/dco, re-
garding m and r to be independent. The rms widths o„
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and cr, are calculated using dP/dco as the weight func-
tion. As the signal develops coherence from the initial
spontaneous radiation, the product o.„o,becomes smaller
than a large initial value corresponding to the incoherent
spontaneous radiation. The limit is reached when Eq.
(1) becomes an equality for a certain n, beyond which
Eq. (2) must be regarded as inapplicable. For an expli-
cit solution, we need to consider the cases of storage
rings and linacs separately as the behavior of the gain
function g(co, r;n) is dilI'erent.

First we consider the case of the storage-ring-based
FELs, in which the saturation is due to the induced ener-

gy spread and bunch lengthening of the electron beams
that accumulate from pass to pass. The power level at
saturation is determined by a balance between the inho-
mogeneous gain reduction and radiation damping, and is
given by the Renieri limit. It is well below the level at
which particle trapping in the ponderomotive potential
becomes significant. Therefore, we may assume that the
gain is independent of the optical power and n, as fol-
lows:

g(co, r;n) =gpF(co) T(r) . (3)

The function F(co) describes the frequency dependence
of the gain. For frequencies near the resonance frequen-
cy cop,

l~ —~pl (o~.(co —cop)
2

(4)
2o~ cop

2 2
COp

In the above, o.~ is the gain bandwidth, given approxi-
mately by crz —I/2N, where N is the number of undula-
tor periods. The function T(r) describes the temporal
profile of the electron pulse. For z near the pulse center,
it is of the form

T(r) =1 —(r/2cr, p) '. (5)
Here o.,p is the rms bunch length of the electron pulse in
time.

With the gain function specified by Eq. (3), Eq. (2)
can be solved easily. The result is

dP(co, r;n) exp[[gpF(co) T(r) —a]n] —
1

dco gpF(co) T(r) —a dco

F(co) =1—

In view of Eqs. (4) and (5), Eq. (6) implies that the
spectral width and the temporal width of the optical
pulse become narrower as the number of passes n in-
creases, as follows:

o Qp =ow
COp

]/2
1

gpn
oi =~up

gpn
(7)

The simultaneous narrowing in the spectral width
and the temporal width, Eq. (7), must stop, to be consis-
tent with the inequality (1). This occurs for n ~ n,
=2nccr, p/gpXN. The limiting bandwidth for this n, is

r ~ ]/2
1

2N 4zccr~

This is a geometric average of the gain bandwidth and
the transform-limited bandwidth X/4nccr~, and was first
derived in the context of the supermode theory. ' It ap-
pears to be consistent with the results of FEL experi-
ments in storage rings (with a suitable replacement of
1/2N by a factor appropriate for optical klystrons).

Next we consider the case of the linac-driven FELs, in
which the optical pulse interacts with a fresh electron
bunch in each round trip. The particle trapping in the
ponderomotive potential becomes significant, and the
FEL intensity reaches saturation when the electron
motion in the undulator corresponds to about one-half of
the synchrotron oscillation period. In this case, it is
necessary to take into account the gain reduction caused
by the high-intensity effect. A simple way to model the
gain reduction is to replace Eq. (3) by

g pF (co) T(r)
g co, r;n I+P(',n)/P

'

„~dP(co, r;n) d
dco

(9)

(10)

In Eq. (9), P is a parameter which sets the scale of the
saturation intensity; it is about the power at which elec-
trons undergo a one-half-period synchrotron oscillation
in passing through the undulator. The precise relation
between P and the saturation intensity P, is derived later
in Eq. (15); P, =[(gp —a)/a]P. In certain cases where
the oscillator saturates at high powers, the spectrum
could exhibit sidebands and chaotic behavior. In the fol-
lowing, we assume that the sideband development is

suppressed by suitable means, such as the cavity detun-
ing. "

According to Eq. (9), the gain reduction for a given
frequency co and temporal position z is determined by a
sum of the optical intensities over all co, but evaluated at
the same r. Thus, Eq. (9) is a model for gain saturation
which is homogeneous in m but inhomogeneous in r. ''
The gain saturation is homogeneous in m because all fre-
quency components which lie within the gain bandwidth
should contribute equally to the saturation. [Strictly
speaking, the integral in Eq. (10) should be replaced by
an integral which extends to a frequency region within
the gain bandwidth. However, we are mainly interested
in the cases for which the spectral width of the function
dP/dco is much narrower than the gain bandwidth, in
which case Eq. (10) is a good approximation. ] On the
other hand, the saturation is inhomogeneous in r since
optical intensities at two r's separated by more than one
slippage distance Nk/c should evolve independently. '

Here we are assuming, as is almost always the case, that
the pulse is much longer than the slippage distance. We
are also assuming that BL ((NX, where BL is the amount
by which the cavity length is shorter than that required
for an exact synchronism between the optical pulses and
the electron pulses. In general, it is advantageous to
choose the so-called cavity detuning 6L different from
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zero to suppress the sideband development. ' However,
the detuning required for that purpose is typically about
M. ~0.1NX when the gain is less than 100%. Thus, the
above inequality is usually well satisfied.

Equations (9) and (10) are intended to represent a
heuristic but qualitatively correct model for the satura-
tion eA'ect which is homogeneous in co and inhomogene-
ous in r. The quantitative details of the saturation eA'ect

could be diferent from this model. ' However, the basic
conclusions of this Letter remain unaffected by such de-
tails.

Before solving Eqs. (2) and (9) explicitly, we discuss
the main features of the spectrum evolution in linac-
based FELs qualitatively as follows.

In the beginning of the FEL evolution the ratio
P(z;n)/P is small so that Eq. (9) reduces to Eq. (3).
Therefore, the spectral width and the temporal width
will both start to narrow as in Eq. (7). As the optical
power increases, the gain becomes smaller due to the in-
tensity-dependent eAect. This so-called saturation eAect
takes place first at r =0 where the initial gain is highest.
However, the optical intensities at ~&0 will keep increas-
ing until they reach their own saturation level. Thus, the
temporal width of the optical pulse, after initial narrow-
ing, will broaden as the optical intensity approaches the
saturation level, and eventually becomes the same as the
width of the electron beam. The limiting bandwidth in
this case is therefore determined by the Fourier trans-
form of the electron pulse profile:

d P(z;n) = [g(z;n) —a]P(z;n) +AS,
dn

where hS =fdco(dS/dco) is the total spontaneous power,
gp(z;n) =gp(z)/[1+P(z;n)/P], and gp(z) =gpT(z).
Let c=hS/P, which is a very small number, typically
10 or less. If gpT(z) & a —c, the FEL is below
threshold, and P(z;n) is of the order of AS for all n. On
the other hand, if gpT(z) & a —c, the solution of Eq.
(13) is

where

[Po(z) +P (z;n )] "

[P, (z) —P(z;n)] "" [Po(z) l"
[P,(.)]"+' (14)

g ()+ ~Stc=, Pp z
go(z) —a '

go(z) - a '

transform-of-the-electron-pulse-limited, or simply the
transform-limited, bandwidth and is consistent with the
results of the FEL experiments in linacs. '

For an explicit solution we proceed as follows: We in-
tegrate Eq. (2) with respect to co. In doing so, we as-
sume that the width of the optical spectrum is much nar-
rower than the gain bandwidth so that

dP(co, z;n) dP(co, z;n) ddco =P z;n4 dco ~ dco

(12)
We obtain

cr /co =X/4rzca~. gp(z) —a
P, z P.

(is)

Equation (11) will be referred to as the Fourier-
The limiting cases of Eq. (14) are

Pp(z)(e "' ' "—1), n «n„
P(z;n) = ~

P, ( )[I —[P ( )/P ( )] "''e " "''"] n»n (17)

In the above, n„= [1/gp(z)] ln [P, (z)/Pp(z) ] is the
number of passes characterizing the saturation of the
power. The optical power P(z;n) is practically constant
at P, (z) for n ~ n, From E. q. (16), we see that the tem-
poral width begins to narrow at small n. However, the
temporal profile at saturation is, assuming go))a, de-
scribed by the electron density profile T(z), the corre-
sponding bandwidth being given by Eq. (11).

The behavior of dP(co, z;n)/dco at large n is approxi-
mately given by the solution of the homogeneous part of
Eq. (2) as follows:

The bandwidth will keep narrowing as described by
Eqs. (19) and (20) until it reaches the Fourier-transform
(of the electron beam) limit given by Eq. (11). Typical-
ly, the bandwidth after n, passes [ cr~/(gpn, —) '~ ] is still
broader than the Fourier-transform limit. Therefore the
spectrum of optical pulses in an FEL cavity keeps evolv-
ing after the intensity reaches saturation at around
n =n, By compa. ring Eqs. (11) and (20), we determine
the number of passes n„required to reach the spectrum
saturation as follows:

dP(co, z;n) dP(co, z;0)
e

dco dc'

where G(z;n) =fo g(z;n)dn It can be sho. wn that

a~(l/gon) '~2, n &&n, ,
cr~/coo = '

]/2
crjv (I/an), n » n, .

(i9)
(20)

n„= (1/a) (4rzca~/2')

Finally, we consider the case of a dc electron beam.
We may delete all z dependence and replace g(co, z;n) by
g(n)F(co) in Eq. (2). The steady-state solution as n ap-
proaches infinity is obtained by setting the right-hand
side of Eq. (2) to zero. The limiting value of g(n) for
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large n, g, must be very nearly equal to a. Thus, we
write g=a(1 —6 /2), where 8«1. The sign of the 8
term here is chosen so that the limiting spectral density,

dp,
dco

1 ds
Q[8 /2+ (cu coo) /2G'~coo]

(22)

is a positive-definite quantity. By integrating Eq. (22)
(neglecting the cu dependence of dS/dcu), we determine

hS dS dS6=2K', AS =G~Np = dco
Pg,„' dM + dc'

(23)

where Pg,„=aP, is the generated power. Thus, the lim-
iting distribution is a Lorentzian with

~/co IFwHM =2rrtrw ~&/&sen . (24)

Equations (23) and (24) are similar to the Schawlow-
Townes formulas except for the replacement of the
bandwidth of the optical cavity by the gain bandwidth
az. Typically, the limiting bandwidth is smaller at least
by a factor of 10 compared to o.~. To reach this band-
width via the gain narrowing described by Eq. (20) will

take at least 10' passes, which corresponds to about 1

day with a 10-m optical cavity. Single-mode operation
of an FEL with a bandwidth similar in magnitude to that
given by Eq. (24) has been reported. ' However, the re-
sult is controversial experimentally' and unlikely theo-
retically because of the slow approach to the limiting
bandwidth. A nonlinear mode-competition theory of
FELs has been developed based on a third-order pertur-
bation expansion to show that a single mode will eventu-
ally dominate by suppressing all other modes. ' Howev-
er, the theory is based on the interaction of a small num-
ber of modes, and does not treat the evolution from the
initial multimode state. The approach to frequency satu-
ration in long-pulse FELs was also studied numerically
in Ref. 19, where the statistical efI'ect of spontaneous ra-
diation is included.
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