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Evolution of Vortex Statistics in Two-Dimensional Turbulence
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Freely evolving two-dimensional turbulence is dominated by coherent vortices. The density of these
vortices decays in time as p t—t with (=0.75. A new scaling theory is proposed which expresses all
statistical properties in terms of g. Thus the average circulation of the vortices increases as t~t' and their
average radius as t~ . The total energy is constant, the enstrophy decreases as t ~, and the vorticity
kurtosis increases as t~ . These results are supported both by numerical simulations of the fluid equa-
tions and by solutions of a modified point-vortex model.

PACS numbers: 47.25.—c

Because of its geophysical and astrophysical impor-
tance, the emergence and evolution of coherent vortices
in freely evolving two-dimensional turbulence has been a
subject of intense study in the last ten years. ' In this
Letter, we formulate a new scaling theory and present
evidence for scaling behavior in both two-dimensional
turbulence and a simple, punctuated-Hamiltonian, dy-
namical model of coherent vortices. In anticipation of
this work on vortex dynamics, we have previously per-
formed studies of punctuated-Hamiltonian models of ag-
gregation in one-dimensional systems.

The fluid-dynamical equations are

g, +J(tlt, g) =v~( —1)~+'V t'tll, g—:V ttt,

where ttt is the stream function, g is the vorticity, J(a, b)
a„bJ—b, a~

—is the Jacobian, V -=a„'+a,' is the Lapla-
cian, and v~ is the hyperviscosity for p a positive integer
(p =2 here). The domain is a square of side 2trL and the
boundary conditions are periodic in both x and y. Nu-
merical solutions of Eq. (1) show that well separated, al-
most axisymmetric, coherent vortices emerge from struc-
tureless initial conditions. Between the vortices there is a
background sea of small-scale, incoherent vorticity.
After the emergence of the vortices the dynamics ap-
pears to be dominated by two processes: (1) mutual ad-
vection of well separated vortices in which Hamiltonian
point-vortex dynamics is a good approximation, and (2)
merger of like-sign vortices during close encounters. As
a result of the mergers, the vorticity is concentrated in
increasingly larger, fewer, and more widely separated
vortices as time increases. A "vortex census" shows that,
for a broad class of initial conditions, the number of vor-
tices per area p(t) decreases according to p —t ~, with

g approximately 0.75. The focus of this Letter is on the
scaling properties of this "dilute vortex gas. "

There is a simple dimensional argument that predicts
(=2. The kinetic energy per area 8 is invariant as

v~ 0, ' where

] fO

2 Vy. Vydx
4 212+

=„dxJdx'g(x)G(x, x')g(x'), (2)

8-pg,„,a (3)

This is easily seen as an approximation to the second ex-
pression in (2) for both spatial arguments within the
same vortex (the self-energy 4, ). ' It also characterizes
the contribution to 8 from arguments in separate vor-
tices (the configuration energy 8„);8, scales with the
number of vortices, rather than the number of pairs, due
to cancellations from vortices of opposite sign. We as-
sume the contributions in (2) from arguments outside
the vortices are negligible.

Inviscid dynamics [vz =0 in Eq. (1)] conserves vortici-
ty on every fluid parcel; this suggests that some quantity
related to the initial vorticity field aff'ects the long-term
dynamics, and this can be the only explanation for the
failure of the p —1 j@t scaling. Turbulence solutions
show that the average extremum is approximately con-
served. We therefore choose g,„,as the second invariant
of our scaling theory. It is initial extrema that form the
cores of the emerging vortices, and the cores are the lo-

and G is the Green function for V . If 8 provides the
only length scale in the problem, then, on dimensional
grounds, one must have p —I/Dt . Other authors ''
have noted the analogy with the kinetic theory of col-
loidal aggregation, which leads to the conclusion that
p- t '. Both of these results clearly disagree with the
turbulence simulations.

If we characterize the flow as a dilute vortex gas with
density p and typical radius a and vorticity extremum
g, „„

then we can express the conserved energy by the
scaling relation
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cations of least dissipation during the subsequent evolu-
tion. Even during merger events, in which both partici-
pating vortices shed circulation into the background cas-
cade, the larger of the vorticity extrema is preserved as
the extremum of the new core. '

Given g and g,„,there is both a length, l= JÃ/(, „t,
and a time scale, i= I/(,„,. Dimensional reasoning only
tells us that p =I g(t/i). Now we suppose that

g —t ~ and relate all scaling exponents to g.
From Eq. (3), a(t) —l(t/i) ~t . If there is no tendency

toward clumping, the average separation between
vortices r scales as p

't or r(t) —l(t/i)~t . Thus the
fraction of the plane covered by vortices decreases as
(t/i) ~t . The typical circulation of a vortex is I —g,„,
xa —iN(t/i)~t . The velocity of a vortex center u is
determined by advection due to its neighbors. Thus, as
one would anticipate, u —I /r —JF. The amplitude of
the stream function is y —ru —I —iC(t/i)~t Usin. g
similar arguments, one finds the following scaling for the
vorticity moments:
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FIG. 1. Vortex data from a turbulence solution (Ref. 6):
the reciprocal of the density of vortices p ', the mean absolute
value of vortex circulation I, the mean vortex radius a, and the
mean of the absolute value of the vorticity extrema g are
shown. The solid straight-line segments show the predicted
slopes based on the choice (=0.75, which is determined from
the data for p '. The numerical factors for the data are
chosen for display purposes only.

Thus the quadratic enstrophy decreases, Z2 —i
&&(t/i) ~t, and the kurtosis of the vorticity distribution
increases, K„—:Z4/Z2 —(t/i) ~

The preceding scaling relations describe a scenario
which is consistent for any positive value of g. We test
our scaling theory in two independent ways: first, by a
comparison of the exponents obtained from a vortex
census of a solution of Eq. (I) and then by a comparison
of the same exponents obtained from a modified point-
vortex model.

The statistics obtained from the solution of Eq. (I) are
computed using the procedure described in Ref. 6. Fig-
ure 1 shows that our scaling theory correctly anticipates
the connections between the various exponents. Our
choice for the population decay exponent is (=0.75.
After an initial period of adjustment, t~ and t~ are
good fits to the average vortex circulation magnitude I
and average vortex radius a, respectively. The core vor-
ticity extremum g,„,does show a slight decrease towards
the end of the calculation and we attribute this to the cu-
mulative effects of the explicit diffusion on the right-
hand side of Eq. (I). But apart from this slight friction-
al decay, to is a convincing fit to the t,",„&data.

The integral moments predicted by the scaling theory
also match the behavior in the turbulence solution. The
velocity variance is very nearly constant with time, as ex-
pected from 8 invariance. Stream-function variance and
vorticity variance and kurtosis match the scaling-theory
predictions on long time scales, but they also exhibit siz-
able fluctuations about these trends.

Our second test of the scaling theory uses a modified
point-vortex model (an example of a punctuated-
Hamiltonian dynamical system). The particular form

presented here is the simplest member of a hierarchy of
models for structured turbulence which we are exploring.
During most of the evolution, the model is the tradition-
al, deterministic, chaotic Hamiltonian dynamics of point
vortices, ' where we assign each vortex a value for a
and g,„,that combine in the dynamically relevant I
(=tie,„,a ). However, the evolution is punctuated by
nonconservative transformations of the vortex population
when two like-sign vortices come within a threshold sep-
aration distance of 3.3 times the average of the two ra-
dii. "

The transformation event is the merger of the two
like-sign vortices into a single new vortex. We restrict
the vortex populations to those where all vortices initially
have identical g,„,. Our transformation rules are deter-
mined by local conservation of g,„tand 8, in its scaling
form (3); since these quantities are also conserved by the
Hamiltonian dynamics, they are thus global invariants
for the model. However, other quantities such as p and
Z„are not conserved during transformations, and even

is conserved only in a scaling approximation (i.e.,
during any particular transformation its numerical value
changes, but, insofar as the model exhibits scaling behav-
ior consistent with our scaling theory, 8, is approximate-
ly conserved over many transformations).

Thus, when vortices 1 and 2 merge into vortex 3,
4 4 4

'te xt3 4extl g t2 a3 &1 +a2

The position of the new vortex is taken as the midpoint
of the line joining the original two centers. (Refinements
of these transformation rules will come from further ex-
amination of the microphysics of vortex merger. )
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FIG. 2. Data from the modified point-vortex model. The
format is as in Fig. 1. The value of mean vorticity extrema is
not displayed here since it is constant in this model.

Our particular solutions are for initial conditions with
600 randomly positioned vortices with equal radius and
equal numbers of each sign. Figure 2 shows statistics
averaged over three such solutions. After a period of ad-
justment, the data compare favorably with both the tur-
bulence solutions and the scaling theory. In particular,
this demonstrates that the statistics of two-dimensional
turbulence can be captured in even a simple form of
deterministic, punctuated-Hamiltonian dynamics. '

The final point is the value of g. Our scaling theory
does not predict this constant. However, it is determined
by the frequency of close approaches among vortices,
which is controlled by the chaotic Hamiltonian dynamics
of point vortices; we are currently investigating the sta-
tistical mechanics of the latter. The few high-resolution
turbulence and point-vortex model solutions examined so
far suggest that g may be universal, but this evidence is
still too meager to draw a firm conclusion.
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