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Direct URCA Process in Neutron Stars
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%e show that the direct URCA process can occur in neutron stars if the proton concentration exceeds
some critical value in the range (11—15)%. The proton concentration, which is determined by the poorly
known symmetry energy of matter above nuclear density, exceeds the critical value in many current cal-
culations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling
rates by a large factor compared to any process considered previously.

PACS numbers: 97.60.Jd, 21.65.+f, 95.30.Cq

Neutron stars are born with interior temperatures of
order 20-50 MeV, but rapidly cool via neutrino emission
to temperatures of less than 1 MeV within minutes. '

The long-term cooling of a neutron star consists of two
periods: a neutrino cooling epoch which lasts until 10—
10 yr and a subsequent photon cooling epoch. Although
neutrino emission from a young neutron star was undou-
btedly observed from SN 1987A, this kind of emission
becomes undetectable from even close-by neutron stars
after about 100 s. In the standard model, the surface
temperatures of neutron stars, however, remain above
10 K for about 10 yr, so they are potentially observ-
able in the x-ray or UV bands. Nevertheless, the
thermal radiation from a neutron star has yet to be
identified unambiguously. All positive observations to
date are for pulsars, and it is unclear how much of the
observed emission is due to the pulsar phenomenon, to a
synchotron-emitting nebula, or to the neutron star itself.

The so-called standard model of neutron star cooling is
based upon neutrino emission from the interior that is
dominated by the modified URCA process

(n,p)+p+e —(n,p)+n+ v, ,

(n,p)+n (n,p)+p+e + v, . (1)

The direct URCA process

n p+e + v„p+e n+ v, (2)
is not usually considered because the proton abundance
is thought to be too small to allow simultaneous energy
and momentum conservation. ' If a pion ' or kaon con-
densate, or quark matter, is present, neutrino emission
is faster than by the modified URCA process. In this
Letter we show that it is possible the direct URCA pro-
cess occurs, and demonstrate that it would lead to more
rapid cooling than any other process.

The minimum proton fraction for which the direct
URCA process can occur is determined by the fact that
at tempertures well below typical Fermi temperatures

S, (n, ) =51.2(n, /n, ) ' MeV. (5)
Assuming for simplicity that S,, ~ nq, we find n, /n,

(TF—10' K), fermions participating in the process
must have momenta close to the Fermi momenta pF;,
where subscripts i =n, p, and e correspond to neutrons,
protons, and electrons, respectively. Since neutrino and
antineutrino momenta are —k T/c «pF;, the condition
for momentum conservation is pfp+ pI;, & pF„. If matter
consists only of neutrons, protons, and electrons, charge
neutrality requires that np =n„where n; acpF; are the
particle densities, and thus the condition becomes 2pFp)pF„,or n„=8nv, and the proton fraction x =nz/(n~
+n„)at threshold is x, =

9 .
To explore the dependence of the proton fraction on

nuclear properties, we consider a schematic model. The
energy per baryon e may be expanded quadratically in
the proton concentration x about its value for symmetric
matter (x = —, ):

e(n, x) =e(n, —,
' )+S,. (n)(1 —2x)'+ .

, (3)
where n =n„+np is the baryon density and 5,, is the bulk
symmetry-energy parameter, which is density dependent.
At nuclear saturation density, n, =0.16 fm, this pa-
rameter can be estimated from nuclear masses and has
the value S,. (n, )—:So= 27-36 MeV. The matter we are
concerned with is degenerate and therefore the tempera-
ture dependence of Eq. (3) may be neglected. The con-
dition for P equilibrium is p, =p„—pv

= —Be/Bx. Stud-
ies of pure neutron matter strongly suggest. that the ex-
pansion (3) with only the quadratic term is a good ap-
proximation for all x, at any density. If muons and oth-
er charged species are ignored, x is then given by

'

Ac(3tr'nx) 'I' =4S,, (n) (1 —2x), (4)
where the electrons are assumed ultrarelativistic and de-
generate. The density n, at which x equals the critical
value x, =

9 is found from
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=[1.71(30 MeV)/So]' '~ . The cases q = —,', —', , 1,
and —, would give n, /n, =25 (9.7), 5.0 (3.1), 2.2 (1.8),
and 1.71 (1.46), respectively, where So =30 (35) MeV is
assumed. Clearly, the critical density is sensitive to the
magnitude of the symmetry energy.

Muons will be present when p, & m„c =105.7 MeV,
which generally is the case for n ~ n„and then pF, and

pF~ will be unequal and Eq. (4) will be modified. To es-
timate the eAects of muons, we consider the case p,
»m„c . In this case, the electron and muon concentra-
tions are each equal to x/2. The threshold condition
pF„=pq~+pF, then implies (1 —x, ) '~ =x,'~ + (x,/2) '~,
or x, =0.148. Although x, is now larger than before,
the critical density is smaller, provided q & —, : The
equation determining x, Eq. (4), has the x on its left-
hand side replaced by x/2 and the critical density be-
comes n, /n, = [1.65(30 MeV)/So] '~ ~ '~, in the case of
a power-law symmetry energy and ultrarelativistic
muons. We also note that if pF„&pFp+pFp the direct
URCA process with muons will occur. The threshold
proton concentration and density for this process are
higher than those for electron since m„&m, .

We now consider models of dense matter. The calcu-
lation most firmly grounded in available nuclear data is
that of Wiringa, Fiks, and Fabrocini, '' which is based on
a two-body potential fitted to nucleon-nucleon scattering,
and a three-body term whose form is suggested by theory
and whose parameters are determined by the binding of
few-body nuclei and the saturation properties of nuclear
matter. The symmetry energies for two choices of the
three-body forces are shown in Fig. 1(a). Because of Eq.
(4), suitably modified to include muons, x mimics the
behavior of S,, (n), as displayed in Fig. 1(b). The proton
concentration attains values very close to those required
for the direct URCA process to occur, but never quite
reaches them. Note, however, the large spread in x
which is consistent with available data. This largely
reflects uncertainties in the three-body interaction. Also
shown in Fig. 1 are results for two other types of models:
a field-theoretical model' with baryon and meson de-
grees (o-ro-p) of freedom calculated up to the one-loop
level, and the relativistic Dirac-Brueckner approach, ' '
in which the matrix elements of the boson-exchange po-
tentials are calculated using in-medium nucleon spinors
and the eAects of correlations are calculated using the
Bethe-Goldstone equation. In these models, x can be
large enough for the direct URCA process to occur. It is
evident that the more rapidly the symmetry energy in-
creases with density, the lower the density at which the
direct URCA process begins to operate.

For the direct URCA process to occur in a neutron
star, its central density, which depends on the pressure
rather than on the symmetry energy, must exceed the
critical density. Figure 1(b) shows the central densities
of a neutron star with a mass of 1.4Mo and of a neutron
star with the maximum mass for the particular equation
of state. Of the models selected, only that of Ref. 13 al-
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FIG. 1. (a) Nuclear symmetry energy as a function of den-

sity for several recent equations of state. (b) Equilibrium pro-
ton fraction for the equations of state shown in (a), including
the presence of muons. Solid circles (squares) denote the criti-
cal density for the direct URCA process for electrons (muons).
Arrows (crosses) denote the central density of 1.4MO (max-
imum-mass) neutron stars.

0.4

up
= 2+ GF cos O(r1 3+g )~n ~ ( —I nq) (I —n3)

I

x 648 (p] pp p3 p4), (6)

lows the direct URCA process in a 1.4Mo star. Howev-
er, in each of the models displayed in Fig. 1, the central
density of the maximum-mass neutron star considerably
exceeds that for the 1.4Mo star.

To illustrate the relationships of S,, (n ) and the
stiAness of the equation of state to the possible oc-
currence of the direct URCA process, we have also con-
sidered the simple parametrization of dense matter pro-
posed by Prakash, Ainsworth, and Lattimer. This pa-
rametrization can simulate the results found in many mi-
croscopic calculations. We conservatively take 50=30
MeV and choose the density dependence of the potential
contributions to S,. to vary as u, 2u /(I+u), and u'
where u =n/n, The functio. ns S,, (n) and x for matter in
equilibrium with electrons and muons are shown in Fig.
2. The overall stiA'ness and the central density of neu-
tron stars are primarily determined by the incompressi-
bility parameter K, in this model. Figure 2(b) displays
the critical proton concentration and density necessary
for the occurrence of the direct URCA process, as well
as the central densities of 1.4Mo and maximum-mass
stars with K, =120, 180, and 240 MeV. Clearly, with
the assumed extrapolations, many realistic combinations
of 5,, and K, allow the direct URCA process to occur.

The emissivity due to the direct URCA process may
be derived from Fermi's golden rule. The antineutrino
energy emission rate from neutron decay is given by
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FIG. 2. Same as I ig. I, but for equations of state from
Prakash, Ainsworth, and Lattimer (Ref. 9), which have the in-
dicated forms for the potential contributions Sp to S, The as-
sumed values of the nuclear incompressibility E, are irrelevant
for calculations of x(n), but do determine central densities of
neutron stars. For each S~ curve, the arrows (crosses), from
left to right, correspond to central densities of 1.4Mo (max-
imum-mass) stars for IC, =240, 180, and 120 MeV, respective-
ly.

where n; is the Fermi function and the subscripts i =1-4
refer to the neutron, proton, electron, and antineutrino,
respectively. The p s are four-momenta and |.4 is the
antineutrino energy. The sum over states is to be per-
formed only over three-momenta p; and the prefactor 2
takes into account the initial spin states of the neutron.
The square of the neutron p-decay matrix element,
summed over spins of final particles and averaged over
angles, is GF cos 19'(1+3g~ ), where GF = 1.436
& 10 erg cm is the weak coupling constant, Op
=0.239 is the Cabibbo angle, and g~= —1.261 is the
axial-vector coupling constant. The factors 1

—n2 and
1
—n3 are final-state blocking factors. The phase-space

sums in Eq. (6) may be simply performed using the
methods of Fermi-liquid theory. Electron capture gives
the same luminosity as neutron decay, but in neutrinos,
and thus the total luminosity for the URCA process is

~URcA =2ep or

EU c' = G cos 0 (1 +3g ), (kT) B,
457m fPlg P1pP e

10080 g 10 5

=4.00&10 (Y,n/n, ) '~ T9e, ergcm s ', (7)

where T9 is the temperature in units of 10 K, n, =0.16
fm, and e, =8(pF, +pF~ —pF„)is the threshold fac-
tor, 0(x) being +1 for x )0 and zero otherwise. If the
muon URCA process can occur, the emissivity is in-
creased by a factor of 2, irrespective of the value of p, /

2m„c .

The estimates above were made assuming the partici-
pating particles are free. Interactions give rise to a num-
ber of changes. First, the neutron and proton densities of
states at the Fermi surfaces are renormalized, which re-
sults in the factor m„m~ in Eq. (7) being replaced by
m„*m~, where nt* is the effective mass (in the sense of
Landau Fermi-liquid theory). This factor may well be of
order 0.5-0.2. A second eff'ect is that in a nuclear medi-
um the effective value of ~gz ~

is quenched. ' At the sat-
uration density ~g~~ =I and it is expected to remain at
approximately this value at higher densities (Brown and
Rho' ). Third, final-state interactions will modify the
effective weak-interaction matrix element, but this is a
small effect since n-gr interactions are small at the
momentum transfers of importance (—pF~). Thus the
total reduction of the URCA rates due to interaction
effects may amount to a factor of 10, but similar factors
must be applied to other neutrino emission processes in-
volving nucleons.

Let us now compare the rate of the direct URCA pro-
cess with that of other processes. The neutrino emissivi-
ty from the modified URCA process, Eq. (1), for free
particles, is '

E od UR( p 10 '(Y,n/n, ) 'i'T9 ergcm 3s ' . (8)
A small correction to this result should be applied to
take into account reactions in which the bystander nu-
cleon is a proton. From Eqs. (7) and (8) we find eUitc~/
EffIpd URcg 5 x 1 0 T9 . Roughly speaking, this is a fac-
tor (T/TF), reflecting the fact that the bystander par-
ticles in the initial and final states of the modified
URCA process each lead to a factor T/TF. This indi-
cates that the rate of the modified URCA process would
be comparable to that of the direct URCA process at
T=TF=10' K. (We note in passing that the modified
URCA process may be regarded as a correction to the
direct URCA process due to damping of participating
nucleon states by collisions. )

Emission from pion and kaon condensates and quark
matter all have the same temperature dependence as the
direct URCA process because the phase-space considera-
tions are essentially identical. For a pion condensate, the
effective p-decay matrix elements contain a factor 82,
where 0, the pion condensate angle, is expected to be
considerably less than unity. Estimates of the pion
emissivity are typically at least a factor of 10 less than
that of the direct URCA process. Emission from kaon
condensates also contains a factor of sin 0~, where 0~ is
the Cabbibo angle, in addition to the square of the kaon
condensate angle. The kaon emissivity is estimated to
be less than the direct URCA process by a factor of
1000. Quark matter, if present, would give rise to direct
URCA processes involving u and d quarks with an emis-
sivity

a~ URcA =8.8&&10 a, (n/n, )Y,' T9 ergcm s

With the standard value of the QCD coupling constant
a, =0.1, and choosing n=4n, and Y, =10 (the equi-
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librium electron fraction in quark matter would be zero
if quarks were massless), one finds that eq URcA/~URcA—10 . Although quark bremsstrahlung has the same
T dependence as direct URCA, it is considerably less
e%cient. '

Dense neutron-star matter (n & 2n, ) may contain a
significant fraction of hyperons, beginning with X, A,
and:- . ' Hyperons provide additional sources of neu-
trino emissivity via direct URCA processes. Even if the
direct nucleon URCA process is not permitted, the direct
URCA processes involving hyperons appear to be al-
lowed above the threshold density for the appearance of
hyperons (Prakash, Prakash, Pethick, and Lattimer' ).
The characteristic luminosity of the hyperon direct
URCA process is comparable to that for nucleons, but
generally somewhat less because of reduced matrix ele-
ments. The luminosities will greatly exceed those of
hyperon-modified URCA processes.

At some densities neutrons may be superAuid and/or
protons superconducting. The direct URCA rate is then
reduced by a factor —exp( —/t /kT), since for the pro-
cess to occur, the total energy of particles in the initial or
final state must exceed 5, the larger of the neutron and
proton gaps. Calculated gaps are uncertain but are typi-
cally of the order of a few hundred keV. ' Thus, when
4, ))kT, neutrino emission rates are significantly reduced.
However, it should be remembered that the modified
URCA rates are reduced by a factor -exp( —2A/kT).

The time for a star's center to cool by the direct
URCA process Eq. (7) to a temperature T9 may be es-
timated to be —20T9 s. Cooling simulations for the
case of enhanced emissivity (compared to the standard
model) from the neutron star's core show that the sur-
face temperature remains high until a cooling wave
reaches the surface. After this, the surface temperature
plunges abruptly below 5x10 K and the star becomes
virtually invisible. This takes from 1 to 100 yr, depend-
ing upon the relative sizes of the neutron star's crust and
core, and thus upon the equation of state, and not upon
the cooling mechanism. There is, therefore, little to dis-
tinguish observationally the eff'ects of the direct URCA
process, pion and kaon condensates, and quark matter.
X-ray or UV observations of neutron stars cannot be
used to demonstrate unequivocably the existence of Bose
condensates or quark matter.

When the direct URCA process can occur, the bulk
viscosity of neutron-star matter will be increased by a
factor (TF/T) compared with that for the modified
URCA process (Haensel and SchaeA'er ). This would
strongly damp radial pulsations and increase the stability
of rapid rotation in very young neutron stars. We fur-
ther observe that the threshold for the direct URCA pro-
cess is expected to lie in the range of central densities for
neutron stars. In view of the step-function character of
the threshold, neutron stars rather close in mass could
have very diferent cooling histories.

To determine if the direct URCA process can occur, it

is important to make more precise estimates of the sym-
metry energy and equation of state at densities above
that of nuclear matter. The continuing attempts to ob-
serve thermal radiation from neutron stars will have im-
portant implications for these properties of nuclear
matter.
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