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Comment on "Soliton Solutions to the Gauged
Nonlinear Schrodinger Equation on the Plane"

There has recently been considerable interest' in the
derivation of static self-dual solutions of wave equations
which contain a Chem-Simons term. Such calculations
have been carried out within the framework of the pho-
tonless gauge theory formulated by this author. " The
latter happens to be particularly convenient because of
the fact that the vector potential in this model is explicit-
ly calculable in terms of the various charge fields.

The results of Refs. 1-3 are derived by introducing a
function m which satisfies

V x Vco =8(x) .

While Eq. (1) does not appear explicitly in Ref. 3, it is
essential to the consistency between Eqs. (9a) and (22).
[Note also the discussion between Eqs. (20) and (21) as
well as that in Ref. 5.] It is the purpose of this Com-
ment to point out, first, that Eq. (1) would require a non-
standard interpretation in the context of distribution
theory, and, second, that the equation is not essential to
the results obtained.

To this end one notes that standard distribution theory
implies that (1) should be interpreted by smearing out
(1) with a test function f(r) which satisfies VxVf =0
everywhere and which goes to zero at r =~. (A possible
choice might be e ' .) Integration by parts yields

+ V'ln[p/IC(z ~ )I'] = —2e'p. (2)

Since InIC(z~)I is a solution of Laplace's equation
everywhere except at points where C(z+. ) vanishes, the
interpretation of (2) and the significance of C(z ~) is
apparent. One has only to solve (2) neglecting possible
zeros of p. Once p is found for the case C= 1 [and for
the upper sign choice in (2)] it can be determined that if
p has zeros of arbitrary multiplicity n; at arbitrary points
z —;,then C(z —) must be

C(. )=+(. —.—;)"'

O=„d rcoVxVf =f(0),
i.e., a contradiction.

However, compatibility with distribution theory can be
restored by avoiding introducing the function co. To this
end one writes the self-duality condition of Ref. 3 as

B'P/Bz+ =ie(A +iA~)0',

where z ~ =x ~iy. In the radiation gauge eA; = —
e;~

x V~@ so that

Be/Bz ~ = + (Bg/Bz ~ )e
which yields the solution ~=e —«C(z ~), where C(z ~ )
is an arbitrary function of its argument. Thus eV&A
= —e %'*+—:—e p becomes

to within a normalization.
Using the solution

p =(4/e') If'(z+) I'/[I+ If(z+) I

'] ',
where f(z+ ) is arbitrary, one finds for A the result

eA; = —
e;~V~ [lnIf'(z+) I

—
1n [1 +

If(z + ) I ] —
1n I C (z ) I j,

while for + one has

e =p'i exp[i arg C(z )] .

Finally, upon specializing to the choice made in Ref. 3

f(z+) =(z+/ro)",

there results

p(r) = 4n 1
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This is the same form for + as found in Ref. 3 and one
thus sees that the final results of Jackiw and Pi (and
Refs. I and 2) can be rigorously established. This could
be of considerable importance in the future if studying
such solutions develops into an active field of endeavor.
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