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Self-Organized Criticality in a Stick-Slip Process
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The force required to pull sandpaper across a carpet fluctuates. Slips (sudden drops of magnitude M
of the force) are observed to have a probability iv(M & m) —m "with b=0.8. The power spectrum of
force fluctuations has a low-frequency 1/f behavior. Thus our system reaches a self-organized critical
state with fractal scaling in both the spatial and the time domain. We introduce a new nonconseri. ative
cellular automaton that exhibits self-organized criticality and describes these observations well.

PACS numbers: 91.30.Px, 05.40.+j, 05.45.+b, 05.70.Jk

To describe nature's many caprices a new geometry
has evolved. This fractal' geometry describes self-sim-
ilar structures and processes in nature. Examples are
mountain landscapes, clouds, coast lines, and irreversible
growth structures. ' But why are fractal structures ob-
served? Bak, Tang, and Wiesenfeld found that driven
extended dissipative dynamical systems reach a self
organized critical state (SOC). They introduced a
cellular-automaton (CA) model of a "sandpile" to which
grains of sand are continuously added. Their model
reached a critical state with a power-law distribution of
avalanches and 1/f noise in the mass-fluctuation power
spectrum. Experiments show that the existence of the
SOC is a finite-size effect for real sandpiles.

Earthquakes have a self-similar distribution of seismic
moment m described by the Gutenberg-Richter power
law for the number of quakes above m,

N(M & m) —m

The value of b is not well established but it is near
b=0.6 for large earthquakes, and near 0.9 for small
ones. Bak and co-workers suggested ' that earth-
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quake dynamics can be described as a self-organized
critical process and introduced CA models of the under-

lying stick-slip process. '' The model develops into a
SOC, but with b=0. 1. The 1/f noise in the time gaps
between earthquakes' and experimental observation of
fractal fault patterns in models of the Earth's crust'
further support the idea that earthquakes represent a
SOC. Burridge and Knopoff'' did experiments by drag-
ging chains of metal blocks connected by springs along a
surface and found that the number of shocks with energy
release above m follows Eq. (1) with b= 1 in their one-
dimensional (1D) system. Continuum dynamical models
describing systems of masses connected by springs'
also lead to SOC.

We present, for the first time, experimental results on
a simple two-dimensional stick-slip system (Fig. 1) that
exhibits self-organized criticality. The force required to
pull a piece of sandpaper across a carpet increases when

the sandpaper sticks to the carpet and decreases abruptly
when the sandpaper slips (Fig. 2). The power spectrum
of the force has 1/f noise at low frequencies (Fig. 3), in

contrast with the 1/f behavior observed in sandpiles. "

The magnitude of the slips are distributed according to
Eq. (1) with b=0.8 (Fig. 4).

We also introduce a new nonconservative cellular-
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FIG. l. Experimental setup. The carpet (c) was fixed to a
90X 25XO. 1-cm aluminum plate (i), bent in a ~ profile 1.6 cm
in height. The edges of the plate rolled on two 10-mm glass
tubes (h). The sandpaper (b) was attached to a stiff circular
rubber support (a), 125 mm in diameter, and was pulled at a
rate of 0.27 mm/s along the carpet by a 0.40-mm nylon fishing
line (d) (2 m long) that wound onto a brass cylinder driven by
a synchronous motor (f). The force on the carpet was mea-
sured using a force transducer (e) (Omega, LCL-010) mount-
ed between the movable aluminum plate and the fixed wooden
motor support (g). A voltmeter connected to a PC read the
force every at a time r =0.18 s with a resolution of 0.2 pV. A
full load of 44.5 N gave a signal of 20 mV.
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FIG. 2. The force required to pull a 120-grain sandpaper
12.5 crn in diameter across a carpet as a function of reduced
time t/r
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FIG. 3. Power spectrum S(f) (arbitrary units) of force fiuc-
tuations as a function of frequency for the experiment for
which a part of the time sequence is shown in Fig. 2. The
cutoff frequency is f, =2.8 Hz. The dashed line is a fit to the
data of the function S(f)—f

automaton model that exhibits SOC and may describe
our experiments. In noise-driven systems' ' it is be-
lieved that the necessary (and sufficient) condition for
SOC is that the dynamics satisfy a conservation law.
For the models discussed here the conditions under
which one should expect SOC are largely unknown.

In our experiments we dragged sandpaper across a
carpet. The nylon string stretched elastically when the
sandpaper stuck to the carpet. The important attribute
of the synthetic carpet used was that it has loops. The
sandpaper did not stick well to carpets with "hairs. " In-
dividual loops of the carpet also stretched until one or
more of them lost their grip. In large slips the sandpaper
moved as a whole. In small slips we could not see the
motion of the paper but measured and heard that loops
lost their grip. The force measured increased with sand-
paper diameter and with weight added on top of the
moving sandpaper. Coarser-grained sandpaper also re-
sulted in larger forces. We were limited by the max-
imum load allowed on the force transducer, motor, and
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FIG. 4. The probability for having slips of magnitude M
above m for the experiment which Fig. 2 is a part of. The
straight line is a fit of the function N(M )m) —m with
b =0.79 ~ 0.05 estimated from 6390 slips.

gears and by the sensitivity of the force transducer. We
adjusted the load to obtain the highest possible dynami-
cal range for force measurements.

The power spectrum of the force time series is shown
in Fig. 3. The results are well described by S(f)-f
for low frequencies. Averaging over many experiments
and results on sandpaper 125 and 55 mm in diameter we
conclude that the stick-slip process studied has a power-
law behavior with a dynamical exponent p =1.04 ~ 0.03.

Our system had complicated elastic properties and
boundary conditions. The sandpaper with its support
was comparatively stiA. At length scales above the typi-
cal loop size the carpet is a low-stiffness quasi-2D elastic
medium. Between slips the movement of the sandpaper
was due to the elastic deformation in the carpet surface.
Within the framework of linear elasticity we may give a
qualitative argument for the response of our system: At
time t and at a position r' the carpet exerts a force
f(r', r) on the sandpaper and vice versa. The resulting
displacement u(r, r ) is determined by an elastic response
function 6:

u(r, t) = d r'G(r —r') f(r', t), (2)

where 5 is the sandpaper area. For the sake of argument
assume that over some fault area A a slip occurs with a
reduction of force Af(r) =f.,ri„—fb,r„, for r E A. The
average slip e in the fault is related to the average force
change by (Af) =pa, through the shear modulus p. The
change in displacements bu(r) is proportional to
m =peA everywhere and therefore the displacement of
the sandpaper will be hx —AG (z),f) —paA. In our set-
up this motion relaxes the nylon string and a decrease of
the force F was measured even if the fault did not extend
to the rim of the sandpaper. Of course, there are intract-
able force changes outside the fracture area. Neverthe-
less, in linear elasticity hx will still be proportional to
m =peA, a quantity termed the seismic moment ' in the
discussion of earthquakes.

Experimentally the force is measured at intervals T:

and a slip occurs when the force no longer increases at a
constant rate. The magnitude of a slip at time to is ap-
proximately F(t p) F(r + r) = —r—F'(t p+ r) (the verti-
cal drops in Fig. 2). If there were no slip, the force
would have increased by F(to) —F(r p

—r) = rF'(r p), i.e. ,

the increase observed in the previous time interval. The
magnitude M of each slip in a series of slips is M=i
&& [F'(tp) —F'(t)], i.e. , the force measured at t, F(t),
subtracted from F(t —r) incremented by the increase in

F expected by stretching the nonslipping loops. Thus a
slip, or series of slips, starts at t =to whenever M» 0.
We always have a slip when F'(0. A series of slips
ends when F' again becomes positive. The observed
magnitude M is proportional to the motion Ax of the
sandpaper and by Eq. (2) proportional to the "seismic
moment" of the slip.

To quantify the magnitude distribution of the slips we
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plot in Fig. 4 the probability N(M )m) of slips having a
magnitude M above m. For 2 orders of magnitude
N(M )m) follows a power law as in (1) with b =0.79
+ 0.05 estimated from all our experiments. The falloff
at large magnitudes is a finite-size eA'ect, since for a
given sandpaper size and load there is a maximum in

force that may be observed. We are unable to resolve
very small slips and find a roll-off' at small m. We be-
lieve that b =0.8 is an upper bound, since at the finite
sandpaper speed used some slips seen as independent
events should in fact be combined into slips of a larger
magnitude.

The observed exponent b =0.8 is below the value b =1
found in 1D experiments'' and in simulations' with
spring-block models. In a 2D spring-block model '

b= —, . Simulations on a 3D spring-breaking model'

gave b =0.6.
Spring-block models are simplistic models of compli-

cated real systems that require massive computer simula-
tions. Cellular-automaton models oA'er, at the cost of
further simplifications, theoretical models capable of
SOC that may be studied with limited computer re-
sources. We have extended Bak's model to nonconserva-
tive systems replacing their cellular automaton by the
updating rule '

r

u; U„—4,
if u; ~ U,„ then '

+1unn unn+ (3)

Here u; is the displacement (in arbitrary units and ini-

tially random) of the carpet fibers driven by the sandpa-
per by either elastic or friction forces on lattice site i of
the square (L && L ) lattice that represents the carpet sur-
face. All u; increase slowly with time until ' one reaches
the critical value U„at which the force from the sandpa-
per loses its grip and u; is reduced to U„—4 =0 (we use

U, „=4 as in Refs. 9 and 10). This elementary slip pro-
cess propagates, via G in Eq. (2), and increases the load
and therefore the displacement at four nearest-neighbor
(nn) positions to u„„+1. Now one or more of the nn

sites may also become unstable and a slip process
(avalanche or "earthquake") involving many sites may
occur. The process stops when for all sites u; & U,„. The
model introduced ' by Bak and co-workers divers from
Eq. (3) in that they replace u; by u; —4 whenever u; ~ 4,
which is a rule that conserves u; except at the edge of the
lattice. As an example, consider the situation where an
nn site has a displacement u„„=3.9. Then the slip at i
results in a change u„„4.9, and in the further evolu-
tion of the slip u„„0in our model. At this step Bak's
conservative model would give u„„0.9, where we find

unn =0.
Our rule takes into account the eA'ect that when a loop

in the carpet loses its grip not all the force at i is
transferred to the neighboring loops. Force is not con-
served and the loss u; —U,„ in u; is distributed over the
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FIG. 5. Scaling plot for probability density for the magni-
tude m (change in force) of slips in the nonconservative model
(3) based on simulations on lattices of size L x L with L =25,
35, and 60 (plot symbols, 0, ~, and H, respectively).
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sandpaper by the propagator G in Eq. (3). The sandpa-

per moves, stretching all the remaining bonds by a small
amount. The magnitude m of a slip is the change in to-
tal force, F=gu;, due to the slip. Our simulations show

(Fig. 5) that the probability density follows the scaling
relation N (m) =m 'g (m/L ') with b =0.5 and
v=1.7. We also found that the probability density for
the number s of sites that take part in a slip follows the
same distribution with b=0.5 but with v=2.0. Our
model has exponents (b and v) that diAer from those ob-
tained using the conservative model ' (with b=0.1)
and it is therefore in a diA'erent universality class. Our
model also exhibits scaling in the time domain but has
S(f)—f with +=0.9 only when averaged over many
samples since quasiperiodic behavior is observed in indi-
vidual samples. The introduction of randomness and an-

isotropy also leads to models with SOC, but with dif-
ferent exponents. A more complete analysis will be pub-
lished later.

In conclusion, the simple stick-slip process of dragging
a sandpaper across a carpet reaches a self-organized crit-
ical state characterized by a power-law probability dis-
tribution similar to the Gutenberg-Richter law (1) for
earthquakes. The power spectrum of the force fluctua-
tions has a 1/f behavior at low frequencies. The stick-
slip system studied here may represent a simple model of
earthquakes. We have introduced a nonconservative
cellular-automaton model of stick-slip processes that
evolves to SOC with both temporal and spatial power-
law correlations that agree better with observations and
our experiments than the original conservative CA.
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