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Quantized Magnetic Susceptibility in (2+ 1) -Dimensional Gapless Semiconductors
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We argue that in a degenerate planar semiconductor, where the low-energy dynamics of electrons can
be modeled by a relativistic Dirac theory, it is important to include the Zeeman interaction of the physi-
cal spin of the electron with magnetic fields. We show that including this interaction leads to a quanti-
zation of the high-field magnetic susceptibility.
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where a are 2x2 Dirac matrices. (We note that the
Dirac matrices here are not related to the physical spin

Level crossings of Dirac operators are responsible for
axial anomalies' in gauge-field theories as well as several
other phenomena. In this Letter we wish to point out a
new eff'ect due to level crossings of a particular Dirac
operator which occur in strong external magnetic fields
in 2+1 dimensions. We show that they lead to a steplike
behavior of the high-field magnetic susceptibility and ar-
gue that they should be observable in the appropriate
condensed-matter-physics systems.

We shall be concerned with gapless semiconductors in

2+1 dimensions. The distinct feature of gapless semi-
conductors is that the valence and conduction bands in-
tersect in discrete points. When, as is often guaranteed
by symmetry and charge neurality, the chemical poten-
tial also lies at those energies, these materials have point
Fermi surfaces.

In general, near a degeneracy of two energy levels, the
Hamiltonian describing the full theory may be approxi-
mated by an effective 2&&2 Hamiltonian H, s describing
the states of the two-level subsystem. The spectrum of
this Hamiltonian is linear. For example, for a gapless
semiconductor the energy e(k) of the electrons near a
degeneracy is linear in the Bloch momentum k:

e(k) =ac, ik[,
with cF the electron velocity describing the slope of the
dispersion relation. A linear relation like (1) in the con-
text of two-dimensional gapless semiconductors was first
obtained in Ref. 3, where graphite, which is the prime
example of such a system, was studied. The value of cF
in gapless semiconductors is typically of the order of
10 —10 m/s, as in ordinary metals. The linear disper-
sion relation (1) has to be contrasted with the one in

metals where the electron energy e(k) depends quadrati-
cally on the Bloch momentum e(k) —k .

After appropriately shifting and rescaling the energy-
momentum variables, the eff'ective two-level Hamiltonian
H, ff may be cast in the Dirac-like form

of the electron. )
There are several examples of two-dimensional tight-

binding lattice systems where the low-energy electron
spectrum is described by a massless Dirac Hamiltonian:
the half-filled honeycomb (graphite) lattice and the
half-filled square lattice with a background field of
flux quantum per plaquette. The latter arises in, for ex-
ample, the flux phase of the Heisenberg-Hubbard mod-
el. In these models it can be argued that at half filling
and weak coupling the symmetries guarantee that the
only relevant operators which contain the electron fields
are precisely those which compose the massless Dirac
Hamiltonian with an even number (2 or 4) of degenerate
flavors of fermions. In these, as on all regular lattices,
lattice doubling ensures that when the spectrum is rela-
tivistic there are an even number of degenerate species of
fermions.

Thus, in the general case there is more than one de-
generacy point and the low-energy dynamics of a real
gapless semiconductor is described by (2) with several
degenerate species of electrons. A further potential
source of degeneracy is the physical spin of the electron.
We can imagine two scenarios. In the first, the spin de-
generacy of the electron is split by interactions with the
crystal lattice and (2) is an effective Hamiltonian for one
of the spin degrees of freedom. In the second, the spin
degeneracy is not split by such interactions, the spin
operator commutes with the Hamiltonian, and there is a
further doubling of the degrees of freedom in (2). It is

the latter case which we shall consider in this Letter.
In actuality, this scenario can only be approximately

true because spin degeneracy is always broken by elec-
tromagnetic interactions through the Zeeman coupling
to magnetic photons. This is most evident in the situa-
tion where there is an external (three-dimensional) mag-
netic field B =V&A. The effective Hamiltonian will, to
a first approximation, simply be minimally coupled to the
vector potential by the replacement ihV ihV —(e/
cF)A, for both physical spin states. The next correction
will involve a Zeeman term that describes the interaction
of the electron's physical spin with the magnetic field.
That is, the effective Hamiltonian describing a gapless
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semiconductor becomes

H, rr ~, ,b
= b~,c,b (i hcFV —eA)

—2gpqs, .86,b, (3)

where the last term is the Zeeman interaction, with 2s,
the Pauli matrices describing the physical spin of the
electrons; pa =eh/2m, with m the free-electron mass, is
Bohr's magneton (in SI units), and g is the eA'ective g
factor which determines the strength of the Zeeman in-
teraction. To our knowledge, no conclusive experimental
value of this g factor near a degeneracy point of a two-
dimensional gapless semiconductor is known. For
narrow-gap semiconductors this factor is given by the ra-
tio m/m*, with m* the eA'ective electron mass; it is typi-
cally of the order 100 since the eA'ective mass is usually
small, m*-O.Olm. We shall assume in the following
that the g factor near a degeneracy is of this order. The
essential results of this Letter are not sensitive to this
particular choice of the g factor. In (3) a, r (= t, f ) are
spin indices and we also made explicit the Dirac indices
a, b (=1,2). If, as usual, there is further degeneracy,
the Hamiltonian (2) should be multiplied by the unit
matrix in the degenerate degrees of freedom. We stress
that (3) describes the situation without doping, since we
did not include a chemical potential to account for a
finite density of electrons. Because of the special role
played by the Zeeman term, this case will, nevertheless,
prove to be nontrivial.

We note that the Zeeman interaction in (3) should not
be confused with the interaction inherent in the 2x2
Hamiltonian (2) of the electron with external magnetic
fields. The latter can be seen by considering the square
of (2) in an external field, H, s. = —(A cFV+ ieA )
—iehcFa'a B3, where the last term resembles a Zee-
man coupling and, if the Dirac Hamiltonian had a mass
term, would yield an apparent Zeeman interaction in the
low-energy "nonrelativistic" limit. Since the Dirac ma-
trices here are not related to spin, it does not describe the
interaction of the electron's physical spin with the exter-
nal field.

The spacing between energy levels of the massless
Dirac Hamiltonian in a magnetic field is proportional to
B' . Since the Zeeman term is linear in the field, this
term in the Hamiltonian (3) will be enhanced for large
fields. Consequently, when the magnetic field is in-
creased, an increasing number of spin-up states cross
from a positive-energy eigenvalue to a negative value,
and vice versa for spin-down states. One, therefore, ex-
pects the magnetization to increase as a function of the
magnetic field. In this Letter we point out that this is
indeed the case. Moreover, we show that the magnetiza-
tion makes discontinuous jumps at the values of B for
which an energy level crosses zero, and that the high-
field magnetic susceptibility is quantized.

The method we use to calculate the magnetization
diA'ers from the one usually employed in the context of

After a partial integration and after subtracting the B-
independent part, i.e., the free-particle contribution, one
thus obtains for the ground-state energy

E =
(2„(2 coth(~eB~ hcFs)— 1

8~'""0 s'" AcF s

(7)

which should be compared with Schwinger's result in

3+ 1 dimensions. " Using the expansion

coth(x) ——= g1 2x
n=i (zen)'+x' '

and carrying out the proper-time integration, the
ground-state energy (7) reduces to the well-known
form' that can also be obtained by other methods,

' 3i2
I ~()«

2n' (9)

with g(z) the Riemann zeta function

((z)= gn
n=l

(1O)

From (9) one easily derives the magnetization and the
magnetic susceptibility.

In the theory described by the Hamiltonian (3) with B
chosen to point in some arbitrary direction, there are ba-
sically two separate subsystems. This is because to a
first approximation the spins of the electrons align or an-
tialign themselves with the magnetic field, so that besides
the Dirac Hamiltonian also the Zeeman interaction term
is diagonal in spin space. The states with spin up are,
therefore, independent of the states with spin down, and

condensed-matter physics. For this reason, before con-
sidering the effect of the Zeeman interaction, let us illus-
trate the method for the standard (massless) Dirac
Hamiltonian. The energy eigenvalues of this Hamiltoni-
an in a magnetic field are the well-known Landau levels

Xp =0,
(4)

A, +., =+ (2~eB~nAcF)' (n =1,2, . . . ) .

In terms of these Landau levels, the ground-state energy
E per unit (two-dimensional) volume and spin degree of
freedom reads

E = — —XIX.I,/eB/ 1

2+6 2,
where ~eB~/2+6 is the degeneracy per Landau level per
unit volume. The sum in (5) may be evaluated by intro-
ducing the "proper-time" representation of the square
root,

ds d
Wa = —„,q, exp( —as) .
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the ground-state energy E splits into two parts.
To facilitate the evaluation of E we note that the Zee-

man term eAectively acts as a chemical potential in the
two subsystems. For the spin-up and -down states this
chemical potential is respectively given by

pl gpggB, pJ = gpgB .

Without loss of generality, we take gp~8 & 0. At zero
temperature, all states with energy less than the chemi-
cal potential are occupied. Since pt increases with in-
creasing external field, it follows that at higher fields
more and more spin-up states become occupied. For
spin-down states, on the other hand, the number of occu-
pied states decreases at higher fields, since pr decreases
with increasing field. At this stage we also note the dual
role played by the magnetic field in the present problem.
It not only determines the degeneracy per Landau level,
but it also determines which levels are occupied.

E=- leBcosBl 1—Zl&. —~l2+6 2
(12)

For the eigenvalues X„given by (4) with the substitution
8 8cosB, the ground-state energy of the system under
consideration is easily calculated to be

The first term in (3) couples only to the perpendicular
component of the magnetic field BcosO, where O is the
angle between the applied field and the normal of the
plane in which the electrons are confined to move. On
the other hand, the Zeeman term (at least in the isotro-
pic approximation that we use here) couples to the full
magnitude of the three-dimensional magnetic field.

The eAect of introducing a chemical potential p in

general is simply to shift the energy eigenvalues X„
—p. Consequently, in the presence of a chemical poten-
tial, expression (5) for the ground-state energy general-
izes to

e8 cosO

nh

vrl+ Z l~. —prl+ I

—farl+ X l~. —

farl

/n( =1 (n( =1

(2nehcpcosBB)' +(no+ i )F88
n =n0+1

with no the integer

no =(gpss/e) eB/2hcF cosB, (14)

(15)
2e hcF cosBBs

where we again subtracted the free-particle contribution. Apart from a factor of 2 due to the spin degeneracy, the stan-
dard case without the Zeeman interaction is recovered by letting the coupling constant g go to zero, so that no =0. In
spite of the complicated form of (15), one can see from (13) that the ground-state energy changes continuously whenev-

er a Landau level is filled or emptied. Moreover, (15) shows that the no levels that have been filled (spin-up states) and
emptied (spin-down states) in the process of turning on the external field have a contribution which is proportional to
8, rather than 8 . This makes the magnetization discontinuous.

When (gpa/e) eB/2hcF cosB is an integer, the magnetization M,

and where we have chosen eBcosO& 0. The integer no counts the number of Landau levels with spin up that become
filled as the magnetic field increases from zero. For a given magnetic-field strength the value of no can be varied by
simply tilting the magnetic field relative to the plane. Because the chemical potentials pt and p~ diAer only by a minus

sign, it follows that whenever a Landau level with spin up is filled, a level with opposite spin is emptied.
In the proper-time representation the ground-state energy (13) reads

eBcosB t' ds d exPl —2(no+1)ehcF cosBBs] gpge8 cosOE= —( o+ —,')
&h "0 (ns) '~ d& 1 —exp( 2ehcF cosBB—s) xA

is discontinuous. Away from these points it is given by
~ 1/2

3 «F cosO eBcosO dx dM= —— e
4 ~0 X ~ dX

2n gx [coth (x) —1 ) ——+2 (no+ —, )
1 gpg8 cosO

X x6
(17)

ln Fig. 1 the magnetization is depicted as a function of the magnetic field for the case B=x/4, g =200, cF =10 m/s.
As already alluded to above, M increases as a function of 8, due to the fact that for higher fields there is an excess of
filled spin-up states over spin-down states. The discrete jumps in the magnetization arise from the presence of the in-
teger no (14) in the last term of expression (17) for the magnetization. They indicate the filling of the next Landau lev-
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el with spin up and the emptying of the corresponding
level with spin down.

The value of the magnetic field at which the first Lan-
dau levels with spin up (down) are filled (emptied) can
be obtained from expression (14) for the integer no It.
follows that for no to be of the order 1-10, a magnetic
field of order

8—10 (cF/g) cosH T (i8)

is needed. So, for cF—10 —10 m/s and g —10, we pre-
dict the first discrete jumps in the magnetization to occur
at magnetic fields of the order of (I-100)cos8 T.
Hence, by tilting the magnetic field away from the nor-
mal of the plane, one easily brings these predictions into
the realm of present-day laboratory conditions.

For large fields, the magnetic susceptibility

that follows from the magnetization (17) is given by

g =2(no+ —,
' ) (gptte/trh )cos8, (20)

implying that the high-field magnetic susceptibility has a

FIG. 1. Plot of the magnetization M (in A, remembering
that we have two spatial dimensions) as a function of the mag-
netic field 8 (in T). The effective g factor is given the value

g =200; for the electron velocity cF at the degeneracy we took
cF 10' m/s, while the angle 0 between the normal of the
plane and the applied field is chosen to be O=tr/4.

steplike behavior (with singularities between the steps).
In closing we remark that in the undoped system un-

der consideration there is no ordinary quantized Hall
eA'ect. The reason is that the Hall current in a massless
Dirac theory is proportional to the sign of the chemical
potential. ' Since the chemical potentials pt and p~
difIer by a minus sign, the contributions of the spin-up
states cancel the contributions of the spin-down states,
and the Hall current is zero. %hether an integer quan-
tum Hall effect can be induced by doping and the
electron-electron interaction is the subject of ongoing
research.

This research was financially supported by the Natural
Sciences and Engineering Reserach Council (NSERC)
of Canada.

' For a review, see R. Jackiw, in Current Algebra and
Anomalies, edited by S. B. Treiman et al. (World Scientific,
Singapore, 1985).

~For reviews, see Solid State Physics, edited by G. Hohler,
Springer Tracts in Modern Physics Vol. 78 (Springer, Berlin,
1976); lVarrow Gap Semiconductor Physics and Applications,
edited by W. Zawadzki, Lecture Notes in Physics Vol. 133
(Springer-Verlag, Berlin, 1980); Physics of Narrow Gap Semi
conductors, edited by E. Gornik et al. , Lecture Notes in Phys-
ics Vol. 152 (Springer-Verlag, Berlin, 1982).

3P. K. Wallace, Phys. Rev. 71, 622 (1947); J. C. Slonczewski
and P. R. Weiss, Phys. Rev. 109, 272 (1958).

4G. W. SemenoA, Phys. Rev. Lett. 53, 2449 (1984); F. D.
M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

SM. Ya. Azbel', Zh. Eksp. Teor. Fiz. 46, 939 (1964) [Sov.
Phys. JETP 19, 634 (1964)]; D. R. Hofstadter, Phys. Rev. B
14, 2239 (1976).

61. AIIIeck and B. Marston, Phys. Rev. B 37, 3774 (1988).
G. W. SemenoA and L. C. R. Wijewardhana, Phys. Rev.

Lett. 63, 2633 (1989); NORDITA report, 1990 (to be pub-
lished).

H. B. Nielsen and M. Ninomiya, Nucl. Phys. B185, 20
(1981);B193, 173 (1981).

9R. J. Hughes, Phys. Lett. 1488, 215 (1984).
toP. Cea, Phys. Rev. D 32, 2785 (1985); we disagree with the

computation of the vacuum energy in this paper.
' 'J. Schwinger, Phys. Rev. 82, 664 (1951).
'2A. N. Redlich, Phys. Rev. D 29, 2366 (1984).
'3A. M. J. Schakel, Phys. Rev. D 43, 1428 (1991).

2656


