
VOLUME 66, NUMBER 20 PHYSICAL REVIEW LETTERS 20 MAY 1991

Noise Rise in Nondegenerate Parametric Amplifiers
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The noise-rise phenomenon is a long-standing problem that was first observed in Josephson-junction-
parametric amplifiers over ten years ago. We present here a case where noise-rise data from a Josephson
junction is successfully explained, using a theory based on the universal properties of a dynamical system
operated near a bifurcation point. The experiment and theory presented here are for a bifurcation of the
Hopf type, a case not discussed previously. The predicted behavior is qualitatively diferent from that of
previously studied bifurcations.

PACS numbers: 72.70.+m, 05.40.+j

The ubiquitous noise rise in Josephson-parametric
amplifiers was first observed in the late 1970's. ' Early
experiments with these devices were disappointing be-
cause it was found that the noise gain increased more
rapidly than the signal gain as the operating parameters
were adjusted. A number of explanations of this
phenomenon came forth, attributing the rise to such
phenomena as phase instability, hopping between coex-
isting attractors, and deterministic chaos. Recently, the
work of Bryant, Wiesenfeld, and McNamara ' ' '

(BWM) showed that the eA'ect could be accounted for as
a universal feature of systems operated near certain
types of instabilities or bifurcations. However, BWM
did not generate any new experimental data in order to
directly test the predictions of their theory. Bocko and
Battiato' observed similar eA'ects in a circuit employing
a varactor diode, demonstrating the universal nature of
this eAect. However, our paper demonstrates for the
first time that data from a Josephson-parametric
amplifier can be successfully explained using the dynam-
ical systems approach.

The BWM theory applies to systems operated near
period doubling, symmetry breaking, and degenerate
saddle-node bifurcations. Conspicuously missing from
this list is the case of a secondary Hopf bifurcation, in

which a second frequency (incommensurate with the
first) begins to emerge at a certain operating parameter.
Since the instability frequency in this case is not related
to the pump frequency, we refer to this as the nondegen-
erate mode of operation. In this paper we present both
theory and experimental data for this case, which, we
will show, has significant differences from those studied
previously. We now find that the noise rise is limited to
a manageable 3 dB under certain operating conditions.
Our experimental results for the nondegenerate
Josephson-parametric amplifier display an excellent gain
and low-noise behavior and good agreement with the
theoretical results. The high performance of this

amplifier provided strong motivation to make this de-
tailed analysis of its behavior.

We begin our analysis by outlining the derivation of
the reduced equation for this case. The reader will find
more details on the general method of obtaining such
equations from the earlier work of BWM. ' We assume
that the system is very near a Hopf bifurcation of a
periodic orbit. In this case the dynamics can be approxi-
mated as lying entirely in the center manifold of the bi-
furcation, and in first approximation can be expressed as

e(t) =No(t)+ [ze' 'e)(t)+c.c.] .

Here No(t) is the primary orbit of fundamental frequen-
cy to~ (the pump frequency), N~(t) is a complex vector
function of fundamental frequency mp characterizing the
instability, cu is the second frequency that emerges in the
Hopf bifurcation, and z is a small and slowly varying
complex amplitude factor. The exact forms of @0 and
@1 depend on the system and on the choice of variables.
Our experimental system is highly resonant near co and
cop co As a result, @0 is small since the system is oA

resonance at cop, and Nl —1+e ' . The behavior of z
which we now describe is universal and applies to all
similar systems. Under appropriate rescalings, z can be
expected to satisfy the normal form equation'

z =pz —zizz'+O(z').

In this equation p is a parameter which crosses zero at
the bifurcation point. Over some small interval near the
bifurcation point it may be expected to vary approxi-
mat=ly linearly with any actual parameter of a physical
system. When crossing p =0, the fixed-point solution to
the equation changes from z =0 to ~z ~

=Jp, correspond-
ing to the emergence of oscillations of frequency co. The
dynamics in this case corresponds to a highly damped
particle in a "Mexican hat potential. "

Following an approach similar to BWM (Ref. 11) to
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include the eAects of a single-frequency signal plus noise
we can obtain an equation of the form

z =pz —z ~z ~
+ re' '+&(t),

where t. is proportional to the amplitude of the applied
signal, 6 is proportional to the detuning, i.e., the dif-
ference between the signal frequency and co, and g(r) is

a complex white-noise term of unit strength, i.e.,
(g(r)(*(r+ r)) =6(r). Both z and t have been rescaled
in obtaining Eq. (3) (the reduced equation) in order to
set the coefticients of two of the terms on the right-hand
side to unity. We have studied the dynamics of this
equation analytically, and by digital simulations.

In the case of a noi".e-free system we drop the final
term in Eq. (3). The presence of the detuned signal
tends to phase lock the system at the signal frequency,
inhibiting the emergence of the Hopf frequency. Trans-
forming to coordinates rotating at the signal frequency
(z ze' ') the system remains phase locked so long as
there exists a stable fixed point. If the signal is weak,
phase locking is lost for small positive p via Hopf bifur-
cation. But for a suSciently large signal the bifurcation
switches to a saddle-node bifurcation, after which the
dynamics follows an orbit near the minimum of the Mex-
ican hat potential at ~z ~

=Jp. In the weak case the new

peak will emerge from zero amplitude at a frequency dis-
tinct from the signal frequency. In the strong case the
new peak will split away from the signal peak at finite
amplitude. It can be shown that the signal power gain
reaches a maximum of I/6 when p =(E/6), a point just
below where phase locking is lost.

We now consider the case of a system perturbed by
both signal and noise near frequency co. In general,
there may be additional contributions to the noise gain
generated by crossover from noise input at the frequen-
cies ro„=munro~

—ro~, increasing the results we give below
for G„by a nearly constant factor C. For our experi-
mental results, we observe C= 2 due to equal crossover
from ro~ (the other frequencies are oIf resonance and
make negligible contribution). In the case of p large and
negative, we obtain equal noise and signal power gains of
G, =G„=l/(p +6 ). As p is increased, we eventually
reach the point where phase locking is lost as we de-
scribed previously. Beyond this point, a new peak
emerges on the opposite side of the Hopf peak (equally
displaced in frequency), and grows to be of equal magni-
tude to the signal peak. A dynamically generated peak
with this behavior is often called an idler. This peak
may be di%cult to see in a noisy system as it will be
broadened to twice the width of the Hopf peak, with a
corresponding decrease in amplitude. When p is large
and positive, the system dynamics will not vary far from
the circle ~z

~

=Jp. A linearized analysis yields a signal
power gain of G, = I/48, which is a factor of 4, or about
6 dB, less than the maximum (noise-free) gain. The
presence of the idler peak at co —6' allows input noise at
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FIG. 1. (Noise gain)/(signal gain) (noise rise) plotted as a
function of signal gain. 8 and e are kept fixed while p is varied
to make the plot. (a) 8=1 and a=0.3. This is typical behav-
ior when signal is weak. (b) 6=1 and m=3. Strong phase-
locking effects are evident.

that frequency to contribute equally to the response noise
at the signal frequency. As a result, the noise power gain
for large p is G„=I/26, a factor of 2, or about 3 dB,
higher than the signal gain.

For 1arge e strong phase-locking eA'ects occur. For p
relatively large but less than the point of maximum sig-
nal gain (e /6 ) we obtain the approximate results
G, =p/2(e —6 p ) and G, =p/e . From these expres-
sions we obtain two surprising effects: (1) For appropri-
ate values of p the noise gain can be less than the signal
gain resulting in a negative noise rise of up to —3 dB,
and (2) the noise gain goes to infinity near the point of
maximum signal gain. Both results are nonlinear eAects
related to the large signal input.

We have also examined the effect of changing the in-

put noise strength. By rescaling the variables needed to
obtain Eq. (3) in the limit of weak signal and small de-
tuning, we find that the maximum signal gain should be
inversely proportional to the input noise power.

Numerical simulations were carried out both to verify
the theory and also to examine the behavior in the
nonasymptotic regimes where exact solutions are not
possible. In Fig. 1 we show typical behavior of the noise
rise (G„/G, ) as a function of signal gain. In 1(a) we
show a case of minimal phase locking; here 6=1 and
a=0.3. Note the 3-dB noise rise and the slight falloft in

G, . In 1(b) is shown a case of strong phase locking; here
6=1 and m=3. This shows many features described by
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the theory: a slight dip in the noise rise (here about —2
dB) followed by a sharp increase to 9.3 dB, followed by a
slight decrease in G„and settling of the noise rise to a
final value of about 3 dB.

We have conducted a systematic study of the noise
performance of a Josephson-parametric amplifier as a
function of pump power and input noise. The amplifier
was pumped at near 38.5 6Hz. Maximum gain occurs
at two modes with frequencies symetrically spaced 200
MHz on either side of half the pump frequency. At the
Hopf instability these modes break into oscillation. We
will refer to the higher-frequency mode as the signal
mode and the lower-frequency mode as the idler mode.
The amplifier was previously used to demonstrate
thermal noise squeezing' and quantum noise squeez-

15ing and can exhibit extremely low-noise performance.
When operated at 0.25 K the amplifier has exhibited
gains in excess of 5000 with all amplifier noise accounted
for by the input noise and the equilibrium fluctuations of
the amplifier losses.

The instrumentation used is similar to that of previous
15experiments except heterodyne detection rather than

homodyne detection is employed. Noise of a known
noise temperature along with a sinusoidal signal were in-

jected into the input port of the parametric amplifier.
The injected signal was tuned to have a frequency close
to that of the signal mode frequency. Since we were
measuring the large-gain behavior of the amplifier the
amplifier s gain and output noise floor could be measured
directly from the spectrum analyzer without signal
averaging. A waveguide switch, which allowed one to re-
place the amplifier with a section of waveguide, made
possible accurate gain and loss measurements. Noise
powers were calibrated using a variable-temperature cold
termination located at the input port of the parametric
amplifier.

Figure 2 shows the noise referred to input (output
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noise divided by the signal power gain) plotted against
the signal power gain for diAering amounts of input
noise power. Care was taken to make the signal power
sufficiently small that its presence did not have a measur-
able eAect on the noise power spectrum. That is, care
was taken to insure that one was in the weak-signal case
corresponding to that of Fig. 1(a). The measured
amplifier losses for these data sets are 2.78 dB for the
81-K curve, 2.09 dB for the 26-K curve, 2.55 dB for the
7.7-K curve, 3.27 dB for the 2.4-K curve, and 3.64 dB
for the 0.48-K curve. From the temperature of the
amplifier (0.25 K for this run) and the measured losses
one can calculate the expected small-pump-power noise
floors, the dashed lines of Fig. 2. Note the good agree-
ment between the expected and measured noise below
the Hopf instability threshold. The equilibrium noise
emitted by the losses and the noise entering the input of
the amplifier thus fully account for the noise seen at the
output of the amplifier for small pump power. As the

pump power is increased the gain eventually saturates
and the noise rises by 3 dB, as expected from theory.
For the experiments of Fig. 2 a constant detuning be-
tween the signal frequency and the signal mode center
frequency was not maintained. (The signal mode center
frequency shifts by 10 MHz as the pump power is in-

creased due to a change in the eA'ective inductance of the
Josephson junction. ) Because of this the gain drops by
more than the 6 dB expected from theory. From the
figure one also sees that the maximum signal gain varies
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FIG. 2. Nosie referred to input as a function of signal power
gain for varying amounts of input noise. The expected below-
threshold values are indicated by dashed lines.
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FIG. 3. Noise referred to input as a function of signal power
gain. The detuning parameter has been held fixed. All the pa-
rarneters of (a) and (b) are identical except the input signal is
10 dB greater in (b).
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roughly inversely with the input noise in agreement with
the theory. For the runs of Fig. 2, the detector noise
temperature was 2440+ 240 K and the amplifier was
pumped at 38.6 GHz. The mixer local oscillator fre-
quency was 19.00 6Hz. The vacuum noise fioor hv/2k is

0.46 K. The equilibrium noise at 0.25 K is only 5%
larger than this. Hence the 0.48-K run is one where the
system is largely driven by vacuum fluctuation noise.

The data of Fig. 3 were taken at constant detuning as
follows. First with the signal turned off' the signal mode
center frequency was determined by locating the max-
imum of the noise power spectrum. The signal frequen-
cy was then detuned a fixed amount of 5 MHz from the
measured signal mode center frequency. The signal was
then turned on. For the runs of Fig. 3, the pump fre-
quency was chosen to be 38.4 GHz, the local oscillator
was chosen to be 20.00 GHz, and the amplifier was
cooled to 50 mK. Cryogenic microwave amplifiers'
were employed to decrease the detector system noise
temperature to 330 K. The amplifier's loss was mea-
sured to be 3.3 dB. The expected noise referred to input
for small pump power is 1.35 K. Shown as dotted lines
this noise compares favorably with the measured value of
1.5 ~0.2 K. The data of Figs. 3(a) and 3(b) were taken
under identical conditions except the signal power was
10 dB larger for the run of Fig. 3(b). Note the qualita-
tive comparison between Fig. 1(a) and Fig. 3(a). Figure
3(a) corresponds to the case when the signal is

suSciently weak to prevent significant phase locking of
the signal mode. Note that again the noise saturates at 3
dB above the low-pump-power value when the pump is
made large. The good qualitative comparison between
Fig. 1(b) and Fig. 3(b) indicates that Fig. 3(b) corre-
sponds to the case when the input signal is su%ciently
strong to force the signal mode to phase lock with the in-

put signal. Note also that, in agreement with theory, the
gain does not drop by more than 6 dB below its max-
imum value as the pump power is increased.

We have studied parametric amplification in nonde-
generate systems in both theory and experiment. The
analysis has been based on the normal form for a Hopf
bifurcation, which is the instability responsible for the
high gain achieved in this operating mode. The experi-
mental results from a Josephson-parametric amplifier are
all in agreement with theory. The theory achieves quan-

titative agreement in predicting the asymptotic level of
noise rise (3 dB), a drop of the high-pump-power gain of
no more than (6 dB) below that of the maximum gain
provided the detuning is held fixed, and the inverse rela-
tion between maximum signal gain and input noise level.
The qualitative agreement between theory and experi-
ment in the parameter region where the excess noise be-
comes large is also good. Work is in progress to measure
the quantities necessary to make this comparison quanti-
tative as well. The theory is universal and will apply to
any parametric amplifier (not just Josephson-junction
based) if operated in the nondegenerate mode.
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