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Coexistence of Self-Induced Transparency Soliton and Nonlinear Schrodinger Soliton
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A self-induced transparency (SIT) soliton can coexist with a nonlinear Schrodinger (NLS) soliton.
This mixed state is called an SIT-NLS soliton. The phase change of the new soliton is governed solely

by the NLS component and the pulse delay is determined solely by the SIT component when a detuning
from the resonance is zero. It is shown for the first time that a stable 2n (N = -I ) SIT-NLS soliton exists
and that high-order SIT-NLS solitons always split into multiple 2x (N =1)-SIT-NLS solitons.

PACS numbers: 42.50.Qg, 42.65.—k

When radiation is guided by a fiber waveguide struc-
ture, diffraction effects are eliminated and this makes it
possible for the radiation to interact with the fiber medi-
um with resonance effects over long distances. ' Experi-
ments on self-induced transparency (SIT) solitons have
been reported by many authors. From a purely
scientific point of view, it would be desirable to perform
an SIT experiment in an environment in which diffrac-
tion effects can be completely ignored.

More importantly, SIT offers the possibility of pulse
shaping and standardization that is different from the
nonlinear Schrodinger (NLS) soliton formation. Since
some of the energy released in the reshaping of a pulse
remains in the medium, and eventually decays via ab-
sorption processes, pulse shaping by an SIT soliton may
yield cleaner pulses than those produced by NLS soliton
formation. Fundamental work on the possibility of an
SIT-NLS soliton was reported by MaImistov and Many-
kin in 1983. However, its detailed physical mechanisms
have not yet been clarified and even its existence has not
been proven.

In the present paper, we show that SIT-NLS solitons
exist and present a detailed physical interpretation of
their nature.

The polarization currents due to SIT and self-phase
modulation (SPM) appear as a sum on the right-hand
side of Maxwell's equations. The slowly varying electric
field E(z, t) is given by

BE+ I BE ~u "J *d~+
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where J, is the slow envelope function, in space and time,
of the nonlinear polarization density and e is the radial
field distribution. J, consists of two parts. One is due to
the SIT contribution and the other is the SPM contribu-
tion. The total nonlinear polarization is

J,e*dS = ——,
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Here v1 and v2 are the wave functions in a two-level sys-
tem, N is the particle density, p12 is the matrix ele-
ment of the two-level system, 5 is the cross section of the
SIT core, A, 1T is the cross section of the mode, and n2 is
the nonlinear index.

Introducing the transformation of variables t —z/vs
=s and z =z, we obtain the following equation as an
SIT-NLS equation:
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Here k" should be negative for the generation of the
NLS soliton.

The wave functions v1 and v2 are rewritten in the form
of F=iv2i —iv1i =pq2 —

p11 and M=v1v2 =p21. This
makes it possible to understand intuitively the way in
which the phase rotation of the dipole changes with the
existence or nonexistence of the NLS soliton. These are
given by
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2p21+2i(QM = EF,
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E =A/( 2 eocnA, fr) ', u =A/(Po(NLsl) 't

x =s/r„q =z/Zo,

where
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where g is the normalized detuning and Q is the normal-
ization factor. Equations (3)-(5) are a set of the gen-
eral nonlinear pulse equations for SIT and NLS. To
normalize the coupled soliton equation, we use the fol-
lowing transformations:
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Thus we obtain
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where we put 5 =8,& for simplicity, and mt —kz is re-
placed with kz —rpr for convenience, so that i r)u/Bq

—i Bu/t)q. W satisfies

Pp(NLs) =W' —,
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It should be noted that 2u satisfies 2z pulses when

Pp(Npg) =Pp(g~T). Thus one obtains
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These results indicate that when 8' is equal to unity, 2u
in (7) and (8) and the SIT part of (9) completely de-
scribe SIT and u satisfies the NLS soliton.

For the SIT soliton, the phase rotation 4I(q) in the z
direction can be taken as an arbitrary value. Therefore,
it is possible to replace M with Me'~ . This transfor-
mation is useful in understanding how the phase change
in the SIT soliton is aA'ected by the NLS soliton. We as-
sume here a normalized SIT-NLS solution of the follow-

ing form since both the SIT and the NLS equations give
rise to a sech pulse solution:

&IT / NLS

2ZQ 2ZQ

which means that for a zero detuning the pulse delay is
determined solely by the SIT component.

Here we show numerically that the stable SIT-NLS
soliton exists. The Runge-Kutta method was used to cal-
culate the time dependences of (7) and (8). These SIT
equations couple with the main Eq. (9) through the z
dependence. Here for simplicity, the coefficient of (M) is
replaced with 8. The three-point differential method'
was used rather than the beam propagation method, ''
and (M) is replaced with M by assuming a homogeneous
broadening. The initial conditions are p22=0, p~~ =1,
pIq=0, and u =Nsech(x). The midpoint method was
adopted rather than the conventional Euler method to in-
crease accuracy in the propagation. ' '

As given in (10) and (11), if W is not equal to unity,
in other ~ords if the 2z SIT does not correspond to the
N =1 NLS soliton, a stable SIT-NLS soliton cannot ex-
ist. That is, an arbitrary u is acceptable for (9) since
there is no explicit expression of u for M. However, re-
garding the SIT soliton propagation, W=l is the only
acceptable condition for (7) and (8) which will maintain
2~ pulses.

The propagation of stable SIT-NLS solitons is shown
in Fig. I. Figure 1(a) is a 2lr SIT soliton with 6=1.
With the addition of the NLS component as shown in

Fig. 1(b), a stable 2lr-(N =i) SIT-NLS soliton propa-
gates. The delay for the 2n (N =1) SIT-N-LS soliton is
exactly the same as that for a 2x SIT soliton. This

u =2II sech2r)(x —Bq)e".
Substituting (13) into (9), we obtain

a= —,
' (2II)'

(i 3)
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from the sech(x) term. This means that the phase fac-
tor is determined only by the NLS part.

The phase term is given by 2ZQ 2ZQ

y(q) = —lr/2+ aq (is)
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from the tanh(x)sech(x) term for homogeneous
broadening. The phase diff'erence at q =0 between the
dipole and the input field is —lr/2, which is the inherent
nature of the dipole transition. Furthermore, the z
dependence of the phase of the dipole is solely deter-
mined by the nonlinear phase change due to the NLS
soliton. One also obtains

ZQ ZQ

(c)

FIG. I. Stable 2' (% = I ) and 4-zc-(lV =2) SIT-NLS soliton
propagations for 6=1. (a) 2rr SIT, (h) 2z-(N = I) SIT-NLS,
(c) 4z SIT, (d) 4' (N =2) SIT-NLS solitons. T-he delays in
(a) and (c) are the same as those in (h) and (d), respectively.
Zo is the normalized distance.
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We investigated ~p2~ ~
and the phase of pq~ as shown

in Figs. 2(a) and 2(b), respectively. There is a —tr/2

phase change in the field amplitude peak, which agrees
with our result given in (15). This is the inherent phase
diA'erence between the electric field and the phase of the
dipole moment. However, it should be noted that there
is no phase change due to the pulse propagation as shown

by the dashed line of Fig. 2(b). Although ~p2~~ is the
same as that of 2tr SIT for 2tr (N=1 -) SIT-NLS soli-
tons, the phase of pq~ is diferent from that of 2z SIT, as
shown in Fig. 2(c). The phase rotation is determined by
the nonlinear phase change due to the NLS soliton part.
From (13) and (14) P(z) = —, (2q) z/Zo=1. 25 rad for

g =
2 and z =2.5Zp, which agrees well with the present

numerical result.
In high-order SIT-NLS solitons, ~p&t~ changes very

rapidly between 0 and 1, and the phase of p2& also
changes between tr/2 and —tr/2. The phase shifts of the
2tr solitons split from 4tr (N =2) -SIT-NLS and
6tr- (N =3) SIT-N LS solitons are also 1.25 rad at
z =2.5Zp.

Figure 3 shows the wave-form changes of a
4n-(N =2) SIT-NLS soliton with 8=0.2, in which the
soliton period is shorter than the absorption length. In
one normalized distance from z =0 to z =Zp, it is clearly
seen that an N =2 NLS soliton is excited, and that the
hump on the left-hand side of the pulse peak is growing,
resulting in the pulse splitting due to the SIT component.
In this case, the wave-form changes due to the N=2
NLS soliton property dominate in the early stage, but
eventually the pulse splits into two 2z solitons.

To investigate the delay diAerence between the SIT
soliton and the SIT-NLS soliton, 4tr SIT and 4tr-(N =2)
SIT-NLS solitons with 6 =0.2 are propagated over

12.5Zp, as shown in Fig. 4. As a result, it is found that
the delay is the same as that of a 2z SIT soliton. This is
surprising because when the NLS term has no efTect on
the delay even the SIT-NLS soliton experiences a strong
interaction between the SIT and the NLS solitons over
long distances.
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