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Localized Traveling-Wave Convection in Binary-Fluid Mixtures
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The structure and dynamics of both subcritical and supercritical localized traveling-wave (LTW) con-
vective states with difl'erent extensions and uniquely selected width are determined by numerical integra-
tion of the proper hydrodynamic field equations with realistic horizontal boundary conditions. A large-
scale mean concentration current loop influences the LTW significantly. It generates a concentration
distribution that hinders propagation of the LTW pulse, so that the group velocity is small but finite.

PACS numbers: 47.25.Qv, 47.20.—k, 47.35.+i

Traveling-wave (TW) phenomena appear in many
linear and nonlinear systems. An example of the latter
are TW patterns of convective rolls in binary-Quid mix-
tures heated from below. This nonequilibrium system is
experimentally and theoretically very well suited to study
nonlinear pattern dynamics. Recently, spatially confined
states of localized traveling-wave (LTW) convective rolls
have been found' in this system. Looking like wave
packets that result from linear superpositions of TW's,
these LTW's are nonlinear phenomena. They consist of
traveling patterns of straight rolls that are localized la-
terally, i.e., perpendicular to the roll axes, by intensity
envelopes which drop to zero into the surrounding quies-
cent conductive state via a leading and a trailing front.
There are subcritical and supercritical LTW states below
and above, respectively, the bifurcation threshold for on-
set of extended convection. Depending on initial condi-
tions and driving history the system either ends up in a
LTW or an extended state filling the whole space. De-
pending on the parameters, the extended states compet-
ing with the LTW are the basic conductive state, TW
convection, or stationary convection. For certain param-
eters a multiplicity of LTW's with different lateral
widths are stable' while for others the LTW pulse and
its width are uniquely selected.

Many features of these LTW states are not under-
stood. Our numerical simulations reveal that the LTW
fields are not just pulses of harmonic waves with a com-
mon simple envelope. Furthermore, LTW's with dif-
ferent and uniquely selected widths differ only in their
center parts while the leading and trailing fronts and the
field structure under the respective fronts are the same.
Here we provide the information lacking so far on the
concentration fields and currents that play a very impor-
tant role. In particular, we find in all LTW's a feedback
mechanism between the LTW fields and a large-scale
mean lateral concentration current loop. This interplay
leads to a concentration distribution ahead of the pulse
which hinders its propagation and decreases the group
velocity from the large value of simple Ginzburg-Landau
approaches to almost zero, in agreement with experi-

mental observations.
Our results follow from numerically solving the hydro-

dynamic field equations as described elsewhere ' in an
x-z section of the layer with rigid, isothermal, imperme-
able horizontal boundaries at z=O, d and periodic boun-
daries at x=O and 20d, where d is the layer thickness.
The fiuid parameters, Lewis number L =D/rc =0.01
and Prandtl number cr=v/tc=10, are typical for room-
temperature ethanol-water mixtures. Here D is the con-
centration diffusion constant, K the thermal diffusivity,
and v the kinematic viscosity. We measure lengths in
units of d and time in units of the vertical thermal dif-
fusion time d /tc. Temperatures T are reduced by the
applied temperature difference h, T between top and bot-
tom, and concentration C by BTa/P, where a=( —1/
p)6p/8T and p= —(1/p)8p/BC are thermal and solutal
expansion coe%cients, respectively.

In the quiescent, laterally homogeneous conductive
state the temperature and concentration variation around
the mean TO, CO,

T„„d(z)= Tp (z —
z ),

C „d(z) =Cp l/f(z 2 ),
generates the vertical buoyancy force b„„d(z)= —oR
x (1+Vr)(z —

—,
' ) that drives convection. Its magnitude,

which increases linearly with Rayleigh number R, is re-
duced for negative separation ratios y (Ref. 9) via the
Soret effect. We shall use r =R/R, as a control param-
eter measuring the driving force, with R, denoting the
convective onset in a pure Auid (ttr =0). For negative Vr

there is, at a threshold r„„abackwards Hopf bifurca-
tion of the conductive state into an unstable extended
state of TW convection. This unstable branch turns for-
ward at a saddle point r~w into an upper stable TW
branch (Fig. 1, bottom). At r„, the TW frequency is
given by the Hopf frequency coH. Then co decreases
monotonically when following the TW solution via the
saddle to the upper stable branch (Fig. 1, top). Finally,
the TW merges at r* with zero frequency into a branch
of stationary overturning convection (SOC) states (solid
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FIGG. 1. Positions of LTW states (open circles) discussed
here in the bifurcation diagrams of frequency co and of maxi-
mal vertical Aow velocity ~ „. „vs Rayleigh number for y
= —0.25, —0.08. Solid symbols are numerically obtained ex-
tended states. Thin lines are guides to the eye. Schematic
dashed lines for unstable TW branches show the bifurcation
topology (Ref. 10). For L =0.01, a =10, and y = —0.25,
—0.08 the oscillatory threshold (Ref. 11) is at r„,=1.3347,
1.0965; Hopf frequency (Ref. 11) coH =11.235, 5.753; group
velocity of linear TW (Ref. 12) at onset vg =AH/x; TW saddle
point (Ref. 8) rpw=1. 215, 1.06; transition TW SOC (Ref.
8) r *= 1.65, 1.09. Our LTW's are at r —r„,= —0.089,0.008.

squares in Fig. 1) that become stable for r ) r*.
We present here LTW solutions (open circles in Fig.

1) at a subcritical driving for y= —0.25 and at a super-
critical driving for y = —0.08. The maximum LTW
Aow amplitudes w .,„are slightly smaller while the fre-
quencies are considerably larger than those in the ex-
tended states at the same r. For y= —0.25 we have
evaluated three different LTW's at the same Rayleigh
number having widths l =6.5, 8.9, and 9.9 but very simi-
lar m and w,. „. Also, the structure of the fields under
the fronts of these LTW pulses is the same, with only the
center part of the different LTW's differing slightly.
Our simulations indicate that there exist LTW's with

many different widths. A multiplicity of LTW states
was also found experimentally ' for y = —0.25. How-
ever, despite applying various search procedures for
y= —0.08 we found only one LTW. Its width l=4.9
agrees with the experimental result of Niemela, Ahlers,
and Cannell. All LTW's move in the direction of phase
propagation with a small group velocity vg that is smaller
than the group velocity vg of linear TW's at onset by a
factor of =70 for y= —0.25 (35 for y= —0.08). '

F hurthermore, vg is smaller than the mean phase velocity
of the LTW by a factor of =30 for y= —0.25 (15 for

y = —0.08).
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FIG. 2. Lateral structure of the LTW state y= —0.25,
r =1.246, co=4.525, vg =0.051, width 8.9. Phase and group
velocity is to the left, as indicated by the arrow. The local
wavelength is shown in (a) together with the critical one X, .
Thin lines in (h)-(d) show snapshots of w, c, and 0 fields at
diAerent vertical positions and thick lines show the pulse en-

velopes along which the extrema move during one oscillation
period. The origin of the abscissa is chosen arbitrarily.

ft.Tw(x, z;t) = +fLTw(x, 1
—z;t + r/2)

under time translation by r/2 combined with vertical
reAection at the midplane of the layer, with + for u and
—for w, 0, and c. The extended TW shows this symme-
try in the laboratory frame and, in addition, the symme-
«y ' fTw(x, z;t) =+fTw(x+)/2, 1 z;t) that . is bro-—
ken by the lateral intensity variation of the LTW. In the
center part of the LTW the fields are very similar to

Figure 2 shows the lateral structure of the LTW in

snapshots of the local wavelength X(x), the vertical flow

velocity w, and the convective concentration and temper-
ature fields

C =C Ccond~ 0 = T Tcond (2)

Under the leading front the wavelength determined from
monitoring the node distances of w over one oscillation
period is larger than the critical one X . Then it d-

1,2,4creases towards the pulse center to values X & X, and
tends to become plateaulike before it drops even further
under the trailing front. The LTW's at y= —0.25, r
=1.246 having different widths have identical X profiles
under the fronts —only the center parts differ.

The fields f=u, w, c,o are time periodic with period r
in the reference frame X comoving with the group veloci-
ty. They display the symmetry
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FIG. 3. Time averages over one oscillation period of the
LTW of Fig. 2. In (a) thick (thin) isolines of (c) are shown in

the x-z plane with increment 0.02 (0.002). Solid (dashed)
lines mark positive (negative) (c). Dots show (c) =0. In (b)
streamlines of the mean concentration current (J) are shown by
dashed (solid) lines for the large-scale, large-amplitude pri-
mary (small-amplitude secondary) current loops. For better
presentation the stream-function scale has been magnified for
the solid lines. In (c) the lateral profiles of (c) and (8) are
shown at z =0.25 together with (c+0) determining the convec-
tive contribution to the mean buoyancy force.

those in an extended TW with similar co—compare, e.g. ,
the laterally highly anharmonic c-field variation of a TW
(Refs. 7 and 8) and LTW. The latter diff'ers drastically
from the variation —e' of linear TW's. Furthermore,
since the c pulse diff'ers substantially from the w and 0
pulses, the LTW state is not just a wave packet,
—A(x)e' ', with one single smooth envelope A(x). Re-
cent measurements by Surko et al. of the shadowgraph
intensity structure I(x) of pulses at y= —0.258 agree
very well with our numerical predictions for I(x).

The pulse envelopes [thick lines in Figs. 2(b)-2(d)]
were found by superimposing graphs at several times
during one period z. The envelopes translate within time
z only by a distance =0.07 that cannot be resolved in

Fig. 2. This slow group velocity of the pulse was deter-
mined from the spatial moments of w . A control run in

a system with extension 40 showed that a minute head-
tail overlap of the c pulse in the smaller system does not
play a role. Note the diff'erent shapes and extensions of
the w, c, and 0 pulse envelopes. They are to a varying
degree asymmetric around the center: The leading front
is steeper than the trailing one and the amplitude is larg-
est just behind the leading front.

Figure 3 shows the time averages (c) and (8) of the
fields of Figs. 2(c) and 2(d) over one oscillation period.
In a TW these averages ' ' are constant in x giving,

e.g. , the k, =0 mode of 0 that carries the vertical con-
vective heat current. The spatial form of the averaged
fields suggests a simple physical explanation for the puz-
zle of why the pulses do not propagate with the fast
group velocity v~ as suggested by simple ad hoc Ginz-
burg-Landau approaches but rather are almost station-
ary. In fact, in the experimental annular channels' the
pulses are, after transients, completely at rest. '"

Here we present an intrinsic mechanism that is not
contained in the Ginzburg-Landau equation and that
strongly binders the pulse propagation. The phase dif-
ference between c and w in the center part of the LTW
generates' as in an extended TW a strong, primary
large-scale, mean concentration current

(J) =((C—Cp)u) —LV(C —yT) (4)

that flows in the upper (lower) half of the layer parallel
(antiparallel) to the phase and group velocity and which

is the key mechanism for creating a special (c) distribu-
tion. Except for a narrow spatial range under the fronts
(J) is dominated by the first convective contribution to
(4). The current is deflected vertically under the fronts
of the pulse to form a large primary concentration circu-
lation loop [dashed lines in Fig. 3(b)] since in the con-
ductive state there can be no concentration current. Un-

der the leading (trailing) front the vertical current (J,) is

laterally focused (dilated). Since part of (J,) is diffusive

under the fronts and since the 0 pulse is narrower than
the c pulse [cf. Fig. 3(c)], the associated mean vertical
concentration gradient around midheight of the layer is

bigger (smaller) under the leading (trailing) front than

in the conductive state. So the current sustains, relative
to the conductive concentration stratification, a small
concentration surplus (deficiency) in the upper (lower)
half of the layer just ahead of the leading front as shown

by the thin isolines of (c) in Fig. 3(a). In this transition

region from conduction to convection, the above concen-
tration difference generates at the plates a diAusive la-

teral current —LB (c). While at the trailing front it
strengthens the large primary concentration loop, it is

directed under the leading front opposite to the primary
current, thus generating two small secondary countercir-
culating current loops [solid lines in Fig. 3(b)] under the

leading front.
Thus the net overall eAect of the primary lateral

current that is generated in the center part of the pulse
and that transports concentration to (away from) the
leading front is to deposit (withdraw) concentration in

the region ahead of the leading front in the upper
(lower) half of the layer. The resulting concentration
distribution ahead of the leading front stabilizes the con-
ductive state and hinders convection since the convective
contribution (b —b„„d)=oR(c+0) reduces the size of
the mean buoyancy force. The negative dip in the thick
solid line in Fig. 3(c) showing (c+0) at z = —,

' demon-

strates the vertically downwards, i.e., stabilizing, contri-
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under the respective fronts of pulses of variable and
uniquely selected width are almost identical. Basically
only the center-part extension of the LTW's diff'er. The
pulses do not move with the fast group velocity of a su-

perposition of linear TW's. They are slowed down to al-
most zero by a global, pulse-induced concentration redis-
tribution. This is an example of an intrinsic feedback in

a nonequilibrium system between the structural dynam-
ics of a confined pattern and a large-scale current gen-
erated by the latter.

We are grateful to G. Ahlers, P. Kolodner, D. R.
Ohlsen, and C. M. Surko for helpful conversations. Sup-
port by the Deutsche Forschungsgemeinschaft and by
the Stiftung Volkswagenwerk is acknowledged by W.B.
and M.K., respectively.

FIG. 4. The supercritical LTW at y= —0.08, r =1.104
(co =2.425, vs =0.052, width 4.9). (a) Local wavelength. (b)
Snapshot and envelope of w as in Figs. 2(a) and 2(b). (c)
Streamlines of (J) as in Fig. 3(b).

bution to (b) in the lower half of the layer. Similarly, in
the upper half, (c+0) is positive, so that again the con-
vective contribution is stabilizing, i.e., upwards. In the
center part of the pulse, on the other hand, (c) enhances
the conductive driving force.

In Fig. 4 we show for y= —0.08 the uniquely selected
LTW at the slightly supercritical driving r —r„,=0.008.
Note, however, the latter's similarity to the previously
described subcritical ones. The variation of X(x) [Fig.
4(a)] is almost identical to that of Fig. 2(a) except for
the plateaulike center part of the wider subcritical pulse.
Also, the streamlines of (J) in Fig. 4(c) reveal the same
concentration transport mechanism as in subcritical
LTW's. In a sense the narrow uniquely selected LTW at
y= —0.08 consists only of two fronts without the center
part of the wider LTW's at y= —0.25.

The existence of supercritical pulses which do not ex-
pand to fill the entire system seems to be related to the
conductive state being only convectively but not abso-
lutely unstable. ' In our laterally periodic system and in

experimental annuli' small perturbations of the con-
ductive state are convectively swept into the pulse with
the fast linear group velocity =vg thus allowing a coex-
istence of localized convection and conduction.

Our numerical analysis of pulselike nonlinear LTW
convection done for the basic fields of velocity, tempera-
ture, and concentration has given insights into many puz-
zling' problems: The field and wavelength variations
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