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Beam-Pointing Fluctuations in Gain-Guided Amplifiers
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We report a measurement of the quantum-mechanical beam-pointing fluctuations in the output of a
gain-guided, single-pass amplifier using stimulated Raman scattering. The experimental result is in
reasonable agreement with a theoretical model that incorporates the effects of excess spontaneous noise
associated with the transverse modes of a gain-guided amplifier.

PACS numbers: 42.50.—p, 42.55.Vc, 42.60.Jf, 42.65.Dr

Macroscopic quantum-mechanical fluctuations of light
have been observed in a number of single-pass stimulated
processes, such as stimulated Raman scattering (SRS),!
superfluorescence, > amplified spontaneous emission,> and
the transient buildup of a pulsed laser.* These process-
es involve light initiated from spontaneous noise and
amplified to a macroscopic level in a gain medium
without a cavity. The fluctuations can occur in the spa-
tial, temporal, or spectral domain. In addition, laser
spectra broader than that expected from standard laser
theory have been predicted® and observed® for gain-
guided lasers. This has been explained in terms of so-
called excess spontaneous noise, which arises in systems
governed by wave equations or boundary conditions hav-
ing non-Hermitian properties. These include gain-
guided amp]iﬁers,5'7 unstable resonators,® and resonators
with strong output couplings.® Since Raman generators
are gain-guided amplifiers, one might expect that their
macroscopic fluctuations would be affected by excess
noise. This paper reports beam-pointing fluctuations in
Raman generation and compares the experimental re-
sults with a theoretical model that incorporates the ex-
cess spontaneous noise effect.

Ordinary spontaneous noise refers to the fact that
there is one extra photon emitted per mode due to
quantum-mechanical uncertainty for systems governed
by Hermitian wave equations. For non-Hermitian sys-
tems, there is more than one extra photon per mode em-
itted, and this is characterized by the excess-noise fac-
tor>” which is always greater than unity. This is because
the mode functions in Hermitian systems are orthogonal,
while the mode functions in non-Hermitian systems are
not orthogonal. As a result, the mode amplitudes are in-
dependent in the former case, and are correlated in the
latter case. It was pointed out by Haus and Kawakami
that the excess-noise factor does not lead to an increased
total spontaneous emission rate, which would violate
thermodynamics.” It is also shown that for loss-guided
systems or gain-guided systems, for which gain discrim-
ination between modes is not significant, the spontaneous
emission rate per mode projected onto an orthogonal
basis is not enhanced. In high-gain amplifiers, where
gain discrimination is significant, excess noise can pro-

duce an observable effect.

Recently, the nonorthogonal mode-expansion ap-
proach has been applied to single-pass x-ray lasers to
predict their transverse spatial coherence properties. '’
The x-ray laser involves photons initiated from spontane-
ous emission and amplified in an open-ended gain-guided
medium, in a fashion similar to that in a Raman genera-
tor. Since nonuniform, high gain is usually employed in
these processes, gain discrimination between different
nonorthogonal modes is expected to be significant. In
analogy to the excess-noise effect observed in the
longitudinal-mode spectra of semiconductor lasers,® the
effects due to the excess-noise factor associated with
the transverse nonorthogonal modes in a gain-guided
amplifier should be observable if one measures, for ex-
ample, the fluctuations in the angular distribution of the
amplifier output.

To guarantee that the angular distribution of the out-
put of a pulsed Raman generator does not change during
a single pulse due to collisional dephasing, a transient
condition must be met, i.e., the pump-pulse duration
must be short compared to the inverse Raman linewidth
of the medium. The spatial distribution of the output
from such a Raman generator has been shown to exhibit
macroscopic fluctuations in the form of a randomly
speckled distribution when the Fresnel number F, de-
fined to be the cross-sectional area of the pump beam di-
vided by the Stokes wavelength and interaction length, is
large.'!" When F is small, the beam is always near
Gaussian, but its direction of propagation fluctuates
from shot to shot.'> We refer to this effect as beam-
pointing fluctuations. The connection between the mac-
roscopic spatial fluctuations and quantum-mechanical
uncertainty can be understood in terms of a mode expan-
sion of the Stokes field; the Raman generator output is a
superposition of waves that are initiated from quantum
noise, and subsequently amplified to a macroscopic level.
Thus a study of the spatial fluctuations of Stokes light
can provide information on the spatial coherence proper-
ties of a noise-initiated, single-pass, high-gain amplifier.

It is important to note that beam-pointing fluctuations
in stimulated Raman generation were first treated in a
calculation by Walmsley,!? in which the gain was as-
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sumed to be spatially uniform, and no excess-noise
effects were present. Another example of beam-pointing
fluctuations in the absence of excess-noise effects was ob-
served in a stable-cavity krypton-ion laser by Levenson,
Richardson, and Perlmutter.'* In a gain-guided Raman
generator, the beam-pointing fluctuations are not caused
by the excess noise; rather, they are influenced by it, and
a quantitative theory of beam-pointing fluctuations must
account for this.

We first consider a linearly polarized Stokes field en-
velope Es(r) satisfying the paraxial wave equation in the
unsaturated gain regime'?

vi+z,-ksaiz—fksg(p) Es(t) =—4zP,(x), (1)

where g(p) is the radially dependent gain profile, kg is
the Stokes wave number, and P,(r) is the spontaneous
noise term that has a quantum-mechanical origin, and is
treated as a S-correlated, Gaussian random variable.'?
The Stokes field can be expressed by the mode expansion

Es(r) =X b,(z)u,(p) . )

n

Because the Stokes field is a Gaussian random process,
the b,’s are correlated, complex, Gaussian random vari-

ables. The mode functions u,(p) are taken to be the
eigenfunctions of the homogeneous transverse part of Eq.

—ifdt fdx E¥ (x,y =0,z=L,t)(8/0x)Es(x,y

=0,z=L,t)

(1), and thus satisfy a non-Hermitian equation

(3)

where g, is the complex eigenvalue. The mode functions
are not orthogonal,

Vi —iksg(p)lu,(p) = —i2ksqnu.(p),

Bnm=fdzpu:;(P)un(p)¢5mn s (4a)
but are biorthogonal,
fdzp U (P (p) =681 . (4b)

The term B,,, which occurs in the expression of power
density per mode for mode n, is always greater than uni-
ty, and is called the excess-spontaneous-noise factor.
The mode amplitudes are correlated according to

Coun=({b}(2)b,(2))=AB,, fexpl(gf+¢,)z1—1}, (5)

where A is a constant. This means that noise can feed
into the dominant mode from all other modes and vice
versa.” Also there is gain discrimination between modes,
due to the overlap of each mode with the gain profile.
Note that the subscript # in Eqs. (2)-(5) is a shorthand
notation for a set of two indices n=(j,;') corresponding
to u,(p)=9¢;(x)¢;(y) and g, =q;7=A;+1r;, where 4, is
an eigenvalue associated with the one-dimensional mode
function ¢;(x). A similar convention is used for the sub-
script m in Egs. (2)-(5).

To characterize the beam-pointing fluctuations, we use
the mean transverse k vector, defined as

Kx Jdtfdx E&(x,y =0,z=L,t)Es(x,y =0,z
where the Stokes field is evaluated at the output face of
the medium with the y coordinate chosen to be at the
center of the Stokes beam (y=0). An alternative
definition for the mean transverse k vector of the whole
beam can be defined by integrating over y in both the
numerator and the denominator in Eq. (6).'*> The
sliced-beam definition of Eq. (6) will be used to compare
with experiment in this Letter. The numerator in Eq.
(6) represents the mean value of the transverse com-
ponent of the Poynting vector for a single realization,
and the normalization ensures that individual realiza-
tions carry equal statistical weight. The far-field propa-
gation angle can be expressed as K, A/2x, where A is the
Stokes wavelength. The probability distribution of find-
ing the mean k vector having a value K is

P(K) =(6%(Kx —K{))
=21—,,fd2§exr>(—iK;éf)(exp(ing)). @)

Substituting the mode expansion for a transient Stokes
field into Eq. (6), the mean transverse k vector can be
expressed as

— Zm Zn brzanmn

= , (8)
Em le br:anmn

X
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) (6)

=L.t)

where
Upn= —lfdx u;ﬁ (X,O)a—iu,,(x,O) .

The probability distribution P(K;) can then be ex-
pressed rigorously in terms of the matrix elements of
Cmna anv and Umn- 13.16

For a Raman generator of length L pumped by a laser
pulse with a Gaussian spatial profile of radius a, the
transverse gain profile can be approximated by g(p)
=go(1 —p?/a?), where go is the plane-wave gain co-
efficient. The quadratic approximation treats the outer
portion of the medium as an absorbing one. Since
amplification of spatial modes occurs predominantly in-
side the region where gain is positive, the absorbing por-
tion of the profile has little effect. The solutions for Eq.
(3) are two-dimensional Gauss-Hermite functions with
complex argument (—iF,)"*x/a and (—iF,)"*y/a,
where F, =Gkgsa?/L is an effective Fresnel number, and
G =goL. The eigenvalue is given by

g [ 2j+1
2 | (—iF,)'2

2/'+1
(—iF,)'\2

8jj'= +1 9)
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FIG. 1. Apparatus for generating two independent Stokes beams which are combined to produce an interference pattern.
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terference patterns of Stokes light and pump light are recorded on a CCD camera.

To describe the propagation of the Stokes field in the
transient regime, it can be shown that the steady-state
plane-wave gain coefficient go should be replaced by
gotsI'/2 in Eq. (1),'® where I' is the Raman linewidth
and g is the Stokes pulse duration. 7 This accounts for
the well-known lower amplification of Stokes field in the
transient regime and allows treatment of the transverse
spatial properties in detail.

In our experiment, we use an interferometric method
to measure the mean transverse k vector. Consider two
plane waves crossing at a small angle; the period of the
interference pattern formed in the spatial intensity distri-
bution is equal to the inverse of the difference of the
transverse components between the two wave vectors.
The periodicity of such an interference pattern is in-
dependent of the relative amplitudes of the individual
fields. Thus measuring the periodicity of the interference
pattern formed by two independently generated Stokes
fields approximately gives the relative mean transverse k
vector, K> — K. The standard deviation K, of a single
beam can be obtained from the standard deviation of
K«:— K, by AK, =A(K,>—K,)/~/2. This equivalence
is approximate because the Stokes fields are not truly
plane waves. The interferometric setup has the advan-
tage that any directional fluctuations of the pump pulse
will not affect the interference pattern of the Stokes field.

The experimental setup is shown in Fig. 1. A Nd-
doped yttrium-aluminum-garnet laser is frequency dou-
bled to produce linearly polarized pulses at 532 nm with
duration 7, =300 ps at full width at half maximum
(FWHM). The output pulse is spectrally filtered to re-
move extraneous light at the Stokes frequency which
could act as a seed for SRS generation. The pump beam
is split into two equal-intensity beams and sent inside a
Raman cell 1 m long containing hydrogen gas at 40 atm.
The collisional linewidth I of the Q(1) transition in H,
is 6.5x10° rad/s at this pressure.'® The two parallel
pump beams are 1 cm apart, and a metal divider is in-
serted inside the cell to eliminate cross talk between the
two parallel beams. The diameter 2a;,; at FWHM of
the pump pulse is varied from 0.98 to 1.94 mm, corre-
sponding to Fresnel number F=rma{;s/AL between 1.1
and 4.3. The longitudinal variation of the pump beam
radius is 12% for the smallest Fresnel number, and 8%

for the largest Fresnel number. This justifies the approx-
imation that the gain profile does not change longitudi-
nally. The Raman gain coefficient g¢ is estimated from
laser intensity measurements to be between 0.34 and
0.38 cm 1. '8 The condition I't; < goL is thus satisfied,
and the Stokes-photon conversion efficiency is kept below
10 74, ensuring that the SRS is in the transient, unsa-
turated regime. The Stokes pulse duration 7g is calcu-
lated to be 180 ps, in agreement with streak-camera ob-
servations. A dichroic mirror DCI1 rejects 99% of the
pump light in both beams. A second beam splitter BS2
is used to combine the two transmitted beams at a small
angle of several milliradians. The recombined beam,
which contains pump and Stokes light, is spectrally
separated by a second dichroic mirror DC2 and filters F1
and F2. The pump and Stokes fields near the output
face of the cell are imaged onto different regions of a
charge-coupled-device (CCD) camera. This allows the
recording of interference patterns formed by the two
Stokes beams, as well as those formed by two pump
beams. We recorded a narrow slice at y =0 of each in-
terference pattern. To ensure the Stokes gain is nearly
reproducible, the laser pulse energy is recorded for each
shot, and data are collected only if the energy is within
*+ 1.5% of the average. The number of samples in each
data set corresponding to a particular Fresnel number is
about 300 or more.

Figure 2 shows two recorded interference patterns for
Fresnel number F =3.6, demonstrating different periodi-
cities. To obtain the relative mean transverse k vector
(K,2— K1) from a quasiperiodic intensity distribution
as shown in Fig. 2, we calculate the Fourier transform of
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FIG. 2. Two examples of single-shot interference patterns of

Stokes light. Different periodicities are seen, indicating fluc-

tuations of the beam-pointing angle (transverse k vector).
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FIG. 3. The triangles are the measured standard deviation
of the mean transverse k vector normalized to n/ai/,. The ordi-
nate can be interpreted as the standard deviation of the beam-
pointing angle divided by its diffraction-limited angle. The er-
ror bars are lower-bound estimates of variations due to digiti-
zation, pump fluctuations, and statistical errors. The solid
curve shows predictions from the biorthogonal-mode model
that incorporates excess-noise effects.

the intensity distribution, which contains a dc peak and
symmetrically located peaks at the spatial modulation
frequency. To obtain the relative mean transverse k vec-
tor for a single shot, we calculate the average of the
square modulus of the positive-frequency peak.

Figure 3 shows the standard deviation AK, plotted
versus the Fresnel number. The ordinate is normalized
to n/a,;. Figure 3 also shows the theoretical predictions
for the beam-pointing standard deviation using the
biorthogonal-mode method presented above. The in-
crease in AK, is expected; the number of spatial modes
increases when the Fresnel number becomes larger, al-
lowing a greater number of spatial modes to contribute
more to the distortion of the wave front of the field.
While the trend of the data and theory (with no free pa-
rameters) agrees, there is absolute agreement only at the
large Fresnel numbers. The reason for the systematic
disagreement at low F is unknown.

In conclusion, the beam-pointing fluctuation provides
information on the transverse-mode structure of light
generated from a single-pass, gain-guided amplifier, on
the gain discrimination between the spatial modes, and
on macroscopic spatial fluctuations caused by quantum-
mechanical uncertainty. The observed beam-pointing
fluctuation of light from transient SRS increases with in-
creasing Fresnel number, and at F =5 the fluctuation is
about 50% of the diffraction-limited angle defined by the
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pump beam aperture. This fluctuation is about 1000
times greater than that observed in a standard gas laser,
where the modes are defined by the stable cavity and are
orthogonal.'* In gain-guided amplifiers, such as SRS,
the modes defined by the spatial gain distribution are not
orthogonal. The experimental result agrees reasonably
well with a theoretical model (with no free parameters)
that incorporates the excess-spontaneous-noise effect as-
sociated with the transverse modes of a gain-guided
amplifier. The increase in beam-pointing fluctuations
with increasing Fresnel number could have significant
implications in cavityless x-ray lasers, which have dy-
namics similar to SRS, but usually have much larger
Fresnel number because of the shorter wavelength.
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